Suppr超能文献

2 型糖尿病小鼠心脏中葡萄糖、脂肪酸和氧化还原途径的代谢重塑。

Metabolic remodelling of glucose, fatty acid and redox pathways in the heart of type 2 diabetic mice.

机构信息

Laboratory of Cardiovascular Science, National Institute on Aging/NIH, Baltimore, MD, 21224, USA.

Division of Cardiology, Department of Medicine, The Johns Hopkins University, Baltimore, MD, 21205, USA.

出版信息

J Physiol. 2020 Apr;598(7):1393-1415. doi: 10.1113/JP276824. Epub 2018 Dec 30.

Abstract

KEY POINTS

Hearts from type 2 diabetic animals display perturbations in excitation-contraction coupling, impairing myocyte contractility and delaying relaxation, along with altered substrate consumption patterns. Under high glucose and β-adrenergic stimulation conditions, palmitate can, at least in part, offset left ventricle (LV) dysfunction in hearts from diabetic mice, improving contractility and relaxation while restoring coronary perfusion pressure. Fluxome calculations of central catabolism in diabetic hearts show that, in the presence of palmitate, there is a metabolic remodelling involving tricarboxylic acid cycle, polyol and pentose phosphate pathways, leading to improved redox balance in cytoplasmic and mitochondrial compartments. Under high glucose and increased energy demand, the metabolic/fluxomic redirection leading to restored redox balance imparted by palmitate helps explain maintained LV function and may contribute to designing novel therapeutic approaches to prevent cardiac dysfunction in diabetic patients.

ABSTRACT

Type-2 diabetes (T2DM) leads to reduced myocardial performance, and eventually heart failure. Excessive accumulation of lipids and glucose is central to T2DM cardiomyopathy. Previous data showed that palmitate (Palm) or glutathione preserved heart mitochondrial energy/redox balance under excess glucose, rescuing β-adrenergic-stimulated cardiac excitation-contraction coupling. However, the mechanisms underlying the accompanying improved contractile performance have been largely ignored. Herein we explore in intact heart under substrate excess the metabolic remodelling associated with cardiac function in diabetic db/db mice subjected to stress given by β-adrenergic stimulation with isoproterenol and high glucose compared to their non-diabetic controls (+/+, WT) under euglycaemic conditions. When perfused with Palm, T2DM hearts exhibited improved contractility/relaxation compared to WT, accompanied by extensive metabolic remodelling as demonstrated by metabolomics-fluxomics combined with bioinformatics and computational modelling. The T2DM heart metabolome showed significant differences in the abundance of metabolites in pathways related to glucose, lipids and redox metabolism. Using a validated computational model of heart's central catabolism, comprising glucose and fatty acid (FA) oxidation in cytoplasmic and mitochondrial compartments, we estimated that fluxes through glucose degradation pathways are ∼2-fold lower in heart from T2DM vs. WT under all conditions studied. Palm addition elicits improvement of the redox status via enhanced β-oxidation and decreased glucose uptake, leading to flux-redirection away from redox-consuming pathways (e.g. polyol) while maintaining the flux through redox-generating pathways together with glucose-FA 'shared fuelling' of oxidative phosphorylation. Thus, available FAs such as Palm may help improve function via enhanced redox balance in T2DM hearts during peaks of hyperglycaemia and increased workload.

摘要

要点

2 型糖尿病动物的心脏表现出兴奋-收缩偶联的紊乱,损害心肌收缩力并延迟舒张,并伴有底物消耗模式的改变。在高葡萄糖和β-肾上腺素刺激条件下,棕榈酸至少部分可以抵消糖尿病小鼠心脏的左心室(LV)功能障碍,改善收缩力和舒张功能,同时恢复冠状动脉灌注压。在糖尿病心脏中进行的中心分解代谢通量计算表明,在棕榈酸存在的情况下,存在涉及三羧酸循环、多元醇和戊糖磷酸途径的代谢重塑,导致细胞质和线粒体区室中氧化还原平衡得到改善。在高葡萄糖和能量需求增加的情况下,由棕榈酸引起的代谢/通量重定向导致的氧化还原平衡的恢复有助于解释 LV 功能的维持,并可能有助于设计预防糖尿病患者心脏功能障碍的新治疗方法。

摘要

2 型糖尿病(T2DM)导致心肌性能降低,最终导致心力衰竭。脂质和葡萄糖的过度积累是 T2DM 心肌病的核心。先前的数据表明,棕榈酸(Palm)或谷胱甘肽在高葡萄糖存在下维持心脏线粒体的能量/氧化还原平衡,挽救β-肾上腺素刺激的心脏兴奋-收缩偶联。然而,伴随改善的收缩性能的相关机制在很大程度上被忽视了。在此,我们在完整心脏中,在底物过剩的情况下,研究了与β-肾上腺素刺激异丙肾上腺素和高葡萄糖引起的糖尿病 db/db 小鼠心脏功能相关的代谢重塑,与正常血糖条件下的非糖尿病对照(+/+,WT)相比。当用棕榈酸灌注时,与 WT 相比,T2DM 心脏的收缩/松弛能力得到改善,同时通过代谢组学-通量组学结合生物信息学和计算建模证实了广泛的代谢重塑。T2DM 心脏的代谢组学显示与葡萄糖、脂质和氧化还原代谢相关途径的代谢物丰度存在显著差异。使用包括细胞质和线粒体区室中葡萄糖和脂肪酸(FA)氧化的心脏中央分解代谢的验证计算模型,我们估计在所有研究条件下,T2DM 心脏中葡萄糖降解途径的通量比 WT 低约 2 倍。棕榈酸的添加通过增强β-氧化和减少葡萄糖摄取来改善氧化还原状态,导致从消耗氧化还原的途径(例如多元醇)的通量重定向,同时维持与葡萄糖-FA“共享供能”氧化磷酸化相关的氧化还原生成途径的通量。因此,在高血糖和工作量增加的高峰期,可用的 FA (如棕榈酸)可能有助于通过改善 T2DM 心脏的氧化还原平衡来改善功能。

相似文献

1
Metabolic remodelling of glucose, fatty acid and redox pathways in the heart of type 2 diabetic mice.
J Physiol. 2020 Apr;598(7):1393-1415. doi: 10.1113/JP276824. Epub 2018 Dec 30.
3
Restoring redox balance enhances contractility in heart trabeculae from type 2 diabetic rats exposed to high glucose.
Am J Physiol Heart Circ Physiol. 2015 Feb 15;308(4):H291-302. doi: 10.1152/ajpheart.00378.2014. Epub 2014 Dec 5.
5
Glucose oxidation rates in fatty acid-perfused isolated working hearts from diabetic rats.
Biochim Biophys Acta. 1989 Nov 6;1006(1):97-103. doi: 10.1016/0005-2760(89)90328-7.
6
Altered metabolism causes cardiac dysfunction in perfused hearts from diabetic (db/db) mice.
Am J Physiol Endocrinol Metab. 2000 Nov;279(5):E1104-13. doi: 10.1152/ajpendo.2000.279.5.E1104.
7
Assessment of myocardial metabolic flexibility and work efficiency in human type 2 diabetes using 16-[18F]fluoro-4-thiapalmitate, a novel PET fatty acid tracer.
Am J Physiol Endocrinol Metab. 2016 Mar 15;310(6):E452-60. doi: 10.1152/ajpendo.00437.2015. Epub 2016 Jan 5.
9
Protective mechanisms of mitochondria and heart function in diabetes.
Antioxid Redox Signal. 2015 Jun 10;22(17):1563-86. doi: 10.1089/ars.2014.6123. Epub 2015 Mar 31.
10
Perfused hearts from Type 2 diabetic (db/db) mice show metabolic responsiveness to insulin.
Am J Physiol Heart Circ Physiol. 2006 May;290(5):H1763-9. doi: 10.1152/ajpheart.01063.2005. Epub 2005 Dec 3.

引用本文的文献

1
Cardiac digital twins: a tool to investigate the function and treatment of the diabetic heart.
Cardiovasc Diabetol. 2025 Jul 18;24(1):293. doi: 10.1186/s12933-025-02839-w.
2
Multi-omics insights into the pathogenesis of diabetic cardiomyopathy: epigenetic and metabolic profiles.
Epigenomics. 2025 Jan;17(1):33-48. doi: 10.1080/17501911.2024.2435257. Epub 2024 Dec 2.
4
Progress in the treatment of diabetic cardiomyopathy, a systematic review.
Pharmacol Res Perspect. 2024 Apr;12(2):e1177. doi: 10.1002/prp2.1177.
6
Beneficial effects of Apelin-13 on metabolic diseases and exercise.
Front Endocrinol (Lausanne). 2023 Nov 28;14:1285788. doi: 10.3389/fendo.2023.1285788. eCollection 2023.
7
Animal models of heart failure with preserved ejection fraction (HFpEF): from metabolic pathobiology to drug discovery.
Acta Pharmacol Sin. 2024 Jan;45(1):23-35. doi: 10.1038/s41401-023-01152-0. Epub 2023 Aug 29.
10
Guidelines on models of diabetic heart disease.
Am J Physiol Heart Circ Physiol. 2022 Jul 1;323(1):H176-H200. doi: 10.1152/ajpheart.00058.2022. Epub 2022 Jun 3.

本文引用的文献

1
Computational Modeling of Mitochondrial Function from a Systems Biology Perspective.
Methods Mol Biol. 2018;1782:249-265. doi: 10.1007/978-1-4939-7831-1_14.
2
Nicotinamide Improves Aspects of Healthspan, but Not Lifespan, in Mice.
Cell Metab. 2018 Mar 6;27(3):667-676.e4. doi: 10.1016/j.cmet.2018.02.001.
3
Glycerol-3-phosphate phosphatase/PGP: Role in intermediary metabolism and target for cardiometabolic diseases.
Biochimie. 2017 Dec;143:18-28. doi: 10.1016/j.biochi.2017.08.001. Epub 2017 Aug 5.
4
Serum allantoin and aminothiols as biomarkers of chronic heart failure.
Acta Cardiol. 2017 Aug;72(4):397-403. doi: 10.1080/00015385.2017.1335104. Epub 2017 Jul 14.
5
Revisiting protein acetylation and myocardial fatty acid oxidation.
Am J Physiol Heart Circ Physiol. 2017 Sep 1;313(3):H617-H619. doi: 10.1152/ajpheart.00303.2017. Epub 2017 Jun 23.
6
Mitochondrial respiration and ROS emission during β-oxidation in the heart: An experimental-computational study.
PLoS Comput Biol. 2017 Jun 9;13(6):e1005588. doi: 10.1371/journal.pcbi.1005588. eCollection 2017 Jun.
7
Using MetaboAnalyst 3.0 for Comprehensive Metabolomics Data Analysis.
Curr Protoc Bioinformatics. 2016 Sep 7;55:14.10.1-14.10.91. doi: 10.1002/cpbi.11.
8
Network dynamics: quantitative analysis of complex behavior in metabolism, organelles, and cells, from experiments to models and back.
Wiley Interdiscip Rev Syst Biol Med. 2017 Jan;9(1). doi: 10.1002/wsbm.1352. Epub 2016 Sep 7.
9
Effects of Sex, Strain, and Energy Intake on Hallmarks of Aging in Mice.
Cell Metab. 2016 Jun 14;23(6):1093-1112. doi: 10.1016/j.cmet.2016.05.027.
10
Identification of a mammalian glycerol-3-phosphate phosphatase: Role in metabolism and signaling in pancreatic β-cells and hepatocytes.
Proc Natl Acad Sci U S A. 2016 Jan 26;113(4):E430-9. doi: 10.1073/pnas.1514375113. Epub 2016 Jan 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验