Suppr超能文献

探究心血管发育的转录调控。

Investigating the transcriptional control of cardiovascular development.

作者信息

Kathiriya Irfan S, Nora Elphège P, Bruneau Benoit G

机构信息

From the Gladstone Institute of Cardiovascular Disease and the Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA (I.S.K., E.P.N., B.G.B.); and Department of Anesthesia and Perioperative Care (I.S.K.), Department of Pediatrics (B.G.B.), Cardiovascular Research Institute (B.G.B.), and Institute for Regeneration Medicine (B.G.B.), University of California, San Francisco.

出版信息

Circ Res. 2015 Feb 13;116(4):700-14. doi: 10.1161/CIRCRESAHA.116.302832.

Abstract

Transcriptional regulation of thousands of genes instructs complex morphogenetic and molecular events for heart development. Cardiac transcription factors choreograph gene expression at each stage of differentiation by interacting with cofactors, including chromatin-modifying enzymes, and by binding to a constellation of regulatory DNA elements. Here, we present salient examples relevant to cardiovascular development and heart disease, and review techniques that can sharpen our understanding of cardiovascular biology. We discuss the interplay between cardiac transcription factors, cis-regulatory elements, and chromatin as dynamic regulatory networks, to orchestrate sequential deployment of the cardiac gene expression program.

摘要

数千个基因的转录调控指导着心脏发育过程中复杂的形态发生和分子事件。心脏转录因子通过与包括染色质修饰酶在内的辅因子相互作用,并结合一系列调控性DNA元件,在分化的每个阶段编排基因表达。在这里,我们展示与心血管发育和心脏病相关的显著例子,并回顾能够加深我们对心血管生物学理解的技术。我们讨论心脏转录因子、顺式调控元件和染色质之间的相互作用,将其作为动态调控网络,以协调心脏基因表达程序的顺序部署。

相似文献

1
Investigating the transcriptional control of cardiovascular development.
Circ Res. 2015 Feb 13;116(4):700-14. doi: 10.1161/CIRCRESAHA.116.302832.
2
Dynamics of cardiomyocyte transcriptome and chromatin landscape demarcates key events of heart development.
Genome Res. 2019 Mar;29(3):506-519. doi: 10.1101/gr.244491.118. Epub 2019 Feb 13.
4
Lncing epigenetic control of transcription to cardiovascular development and disease.
Circ Res. 2015 Jul 3;117(2):192-206. doi: 10.1161/CIRCRESAHA.117.304156.
5
Distal enhancers: new insights into heart development and disease.
Trends Cell Biol. 2014 May;24(5):294-302. doi: 10.1016/j.tcb.2013.10.008. Epub 2013 Dec 7.
6
Epigenetic factors and cardiac development.
Cardiovasc Res. 2011 Jul 15;91(2):203-11. doi: 10.1093/cvr/cvr138. Epub 2011 May 23.
8
Advances in analysis of transcriptional regulatory networks.
Wiley Interdiscip Rev Syst Biol Med. 2011 Jan-Feb;3(1):21-35. doi: 10.1002/wsbm.105.
10
Dynamic and coordinated epigenetic regulation of developmental transitions in the cardiac lineage.
Cell. 2012 Sep 28;151(1):206-20. doi: 10.1016/j.cell.2012.07.035. Epub 2012 Sep 12.

引用本文的文献

2
3
Stage-specific DNA methylation dynamics in mammalian heart development.
Epigenomics. 2025 Apr;17(5):359-371. doi: 10.1080/17501911.2025.2467024. Epub 2025 Feb 21.
4
Cardiac Transcription Factors and Regulatory Networks.
Adv Exp Med Biol. 2024;1441:295-311. doi: 10.1007/978-3-031-44087-8_16.
5
In-Depth Genomic Analysis: The New Challenge in Congenital Heart Disease.
Int J Mol Sci. 2024 Feb 1;25(3):1734. doi: 10.3390/ijms25031734.
6
The Tbx20-TLE interaction is essential for the maintenance of the second heart field.
Development. 2023 Nov 1;150(21). doi: 10.1242/dev.201677. Epub 2023 Oct 30.
10
Human-gained heart enhancers are associated with species-specific cardiac attributes.
Nat Cardiovasc Res. 2022 Sep;1(9):830-843. doi: 10.1038/s44161-022-00124-7. Epub 2022 Sep 15.

本文引用的文献

1
A large permissive regulatory domain exclusively controls Tbx3 expression in the cardiac conduction system.
Circ Res. 2014 Aug 1;115(4):432-41. doi: 10.1161/CIRCRESAHA.115.303591. Epub 2014 Jun 24.
2
The emergence of proteome-wide technologies: systematic analysis of proteins comes of age.
Nat Rev Mol Cell Biol. 2014 Jul;15(7):453-64. doi: 10.1038/nrm3821. Epub 2014 Jun 18.
3
In pursuit of design principles of regulatory sequences.
Nat Rev Genet. 2014 Jul;15(7):453-68. doi: 10.1038/nrg3684. Epub 2014 Jun 10.
4
The architecture of gene expression: integrating dispersed cis-regulatory modules into coherent regulatory domains.
Curr Opin Genet Dev. 2014 Aug;27:74-82. doi: 10.1016/j.gde.2014.03.014. Epub 2014 Jun 5.
5
Development and applications of CRISPR-Cas9 for genome engineering.
Cell. 2014 Jun 5;157(6):1262-1278. doi: 10.1016/j.cell.2014.05.010.
6
Coregulation of transcription factor binding and nucleosome occupancy through DNA features of mammalian enhancers.
Mol Cell. 2014 Jun 5;54(5):844-857. doi: 10.1016/j.molcel.2014.04.006. Epub 2014 May 8.
7
Genetic basis of congenital cardiovascular malformations.
Eur J Med Genet. 2014 Aug;57(8):402-13. doi: 10.1016/j.ejmg.2014.04.010. Epub 2014 Apr 30.
8
The rise of regulatory RNA.
Nat Rev Genet. 2014 Jun;15(6):423-37. doi: 10.1038/nrg3722. Epub 2014 Apr 29.
9
The roles of mediator complex in cardiovascular diseases.
Biochim Biophys Acta. 2014 Jun;1839(6):444-51. doi: 10.1016/j.bbagrm.2014.04.012. Epub 2014 Apr 18.
10
An atlas of active enhancers across human cell types and tissues.
Nature. 2014 Mar 27;507(7493):455-461. doi: 10.1038/nature12787.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验