Suppr超能文献

基于常微分方程的脑结构有效网络的可解释时空嵌入

Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation.

作者信息

Tang Haoteng, Liu Guodong, Dai Siyuan, Ye Kai, Zhao Kun, Wang Wenlu, Yang Carl, He Lifang, Leow Alex, Thompson Paul, Huang Heng, Zhan Liang

机构信息

University of Texas Rio Grande Valley, Edinburg, TX 78539, USA.

University of Maryland, College Park, MD 20742, USA.

出版信息

Med Image Comput Comput Assist Interv. 2024 Oct;15002:227-237. doi: 10.1007/978-3-031-72069-7_22. Epub 2024 Oct 4.

Abstract

The MRI-derived brain network serves as a pivotal instrument in elucidating both the structural and functional aspects of the brain, encompassing the ramifications of diseases and developmental processes. However, prevailing methodologies, often focusing on synchronous BOLD signals from functional MRI (fMRI), may not capture directional influences among brain regions and rarely tackle temporal functional dynamics. In this study, we first construct the brain-effective network via the dynamic causal model. Subsequently, we introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE). This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic inter-play between structural and effective networks via an ordinary differential equation (ODE) model, which characterizes spatial-temporal brain dynamics. Our framework is validated on several clinical phenotype prediction tasks using two independent publicly available datasets (HCP and OASIS). The experimental results clearly demonstrate the advantages of our model compared to several state-of-the-art methods.

摘要

磁共振成像(MRI)衍生的脑网络是阐明大脑结构和功能方面的关键工具,包括疾病和发育过程的影响。然而,现有的方法通常侧重于功能磁共振成像(fMRI)的同步血氧水平依赖(BOLD)信号,可能无法捕捉脑区之间的方向性影响,并且很少处理时间功能动态。在本研究中,我们首先通过动态因果模型构建脑有效网络。随后,我们引入了一个可解释的图学习框架,称为时空嵌入常微分方程(STE-ODE)。该框架包含专门设计的有向节点嵌入层,旨在通过常微分方程(ODE)模型捕捉结构网络和有效网络之间的动态相互作用,该模型表征了时空脑动态。我们的框架在使用两个独立的公开可用数据集(HCP和OASIS)的几个临床表型预测任务上得到了验证。实验结果清楚地证明了我们的模型与几种先进方法相比的优势。

相似文献

本文引用的文献

1
Revealing Continuous Brain Dynamical Organization with Multimodal Graph Transformer.利用多模态图变换器揭示大脑的连续动态组织
Med Image Comput Comput Assist Interv. 2022 Sep;13431:346-355. doi: 10.1007/978-3-031-16431-6_33. Epub 2022 Sep 15.
3
Functional brain networks reflect spatial and temporal autocorrelation.功能性脑网络反映了空间和时间自相关。
Nat Neurosci. 2023 May;26(5):867-878. doi: 10.1038/s41593-023-01299-3. Epub 2023 Apr 24.
8
Spatio-Temporal Graph Convolution for Resting-State fMRI Analysis.用于静息态功能磁共振成像分析的时空图卷积
Med Image Comput Comput Assist Interv. 2020 Oct;12267:528-538. doi: 10.1007/978-3-030-59728-3_52. Epub 2020 Sep 29.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验