Tang Haoteng, Liu Guodong, Dai Siyuan, Ye Kai, Zhao Kun, Wang Wenlu, Yang Carl, He Lifang, Leow Alex, Thompson Paul, Huang Heng, Zhan Liang
University of Texas Rio Grande Valley, Edinburg, TX 78539, USA.
University of Maryland, College Park, MD 20742, USA.
Med Image Comput Comput Assist Interv. 2024 Oct;15002:227-237. doi: 10.1007/978-3-031-72069-7_22. Epub 2024 Oct 4.
The MRI-derived brain network serves as a pivotal instrument in elucidating both the structural and functional aspects of the brain, encompassing the ramifications of diseases and developmental processes. However, prevailing methodologies, often focusing on synchronous BOLD signals from functional MRI (fMRI), may not capture directional influences among brain regions and rarely tackle temporal functional dynamics. In this study, we first construct the brain-effective network via the dynamic causal model. Subsequently, we introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE). This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic inter-play between structural and effective networks via an ordinary differential equation (ODE) model, which characterizes spatial-temporal brain dynamics. Our framework is validated on several clinical phenotype prediction tasks using two independent publicly available datasets (HCP and OASIS). The experimental results clearly demonstrate the advantages of our model compared to several state-of-the-art methods.
磁共振成像(MRI)衍生的脑网络是阐明大脑结构和功能方面的关键工具,包括疾病和发育过程的影响。然而,现有的方法通常侧重于功能磁共振成像(fMRI)的同步血氧水平依赖(BOLD)信号,可能无法捕捉脑区之间的方向性影响,并且很少处理时间功能动态。在本研究中,我们首先通过动态因果模型构建脑有效网络。随后,我们引入了一个可解释的图学习框架,称为时空嵌入常微分方程(STE-ODE)。该框架包含专门设计的有向节点嵌入层,旨在通过常微分方程(ODE)模型捕捉结构网络和有效网络之间的动态相互作用,该模型表征了时空脑动态。我们的框架在使用两个独立的公开可用数据集(HCP和OASIS)的几个临床表型预测任务上得到了验证。实验结果清楚地证明了我们的模型与几种先进方法相比的优势。