Suppr超能文献

功能近红外光谱(fNIRS)测量对头部运动的敏感性:智能手机在实验室中的实际应用。

Sensitivity of fNIRS measurement to head motion: an applied use of smartphones in the lab.

作者信息

Cui Xu, Baker Joseph M, Liu Ning, Reiss Allan L

机构信息

Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine.

Department of Radiology, Stanford University School of Medicine.

出版信息

J Neurosci Methods. 2015 Apr 30;245:37-43. doi: 10.1016/j.jneumeth.2015.02.006. Epub 2015 Feb 14.

Abstract

BACKGROUND

Powerful computing capabilities in small, easy to use hand-held devices have made smart technologies such as smartphones and tablets ubiquitous in today's society. The capabilities of these devices provide scientists with many tools that can be used to improve the scientific method.

METHOD

Here, we demonstrate how smartphones may be used to quantify the sensitivity of functional near-infrared spectroscopy (fNIRS) signal to head motion. By attaching a smartphone to participants' heads during the fNIRS scan, we were able to capture data describing the degree of head motion.

RESULTS

Our results demonstrate that data recorded from an off-the-shelf smartphone accelerometer may be used to identify correlations between head-movement and fNIRS signal change. Furthermore, our results identify correlations between the magnitudes of head-movement and signal artifact, as well as a relationship between the direction of head movement and the location of the resulting signal noise.

CONCLUSIONS

These data provide a valuable proof-of-concept for the use of off-the-shelf smart technologies in neuroimaging applications.

摘要

背景

小型、易于使用的手持设备中强大的计算能力使智能手机和平板电脑等智能技术在当今社会无处不在。这些设备的功能为科学家提供了许多可用于改进科学方法的工具。

方法

在此,我们展示了智能手机如何用于量化功能性近红外光谱(fNIRS)信号对头部运动的敏感性。通过在fNIRS扫描期间将智能手机连接到参与者头部,我们能够捕获描述头部运动程度的数据。

结果

我们的结果表明,从现成的智能手机加速度计记录的数据可用于识别头部运动与fNIRS信号变化之间的相关性。此外,我们的结果还识别了头部运动幅度与信号伪影之间的相关性,以及头部运动方向与产生的信号噪声位置之间的关系。

结论

这些数据为在神经成像应用中使用现成的智能技术提供了有价值的概念验证。

相似文献

1
Sensitivity of fNIRS measurement to head motion: an applied use of smartphones in the lab.
J Neurosci Methods. 2015 Apr 30;245:37-43. doi: 10.1016/j.jneumeth.2015.02.006. Epub 2015 Feb 14.
2
Reconstructing functional near-infrared spectroscopy (fNIRS) signals impaired by extra-cranial confounds: an easy-to-use filter method.
Neuroimage. 2014 Jul 15;95:69-79. doi: 10.1016/j.neuroimage.2014.02.035. Epub 2014 Mar 19.
5
Lower Limb Movement Preparation in Chronic Stroke: A Pilot Study Toward an fNIRS-BCI for Gait Rehabilitation.
Neurorehabil Neural Repair. 2014 Jul;28(6):564-75. doi: 10.1177/1545968313520410. Epub 2014 Jan 30.
6
Motion artifact cancellation in NIR spectroscopy using Wiener filtering.
IEEE Trans Biomed Eng. 2005 May;52(5):934-8. doi: 10.1109/TBME.2005.845243.
8
Global motion detection and censoring in high-density diffuse optical tomography.
Hum Brain Mapp. 2020 Oct 1;41(14):4093-4112. doi: 10.1002/hbm.25111. Epub 2020 Jul 10.
9
fNIRS exhibits weak tuning to hand movement direction.
PLoS One. 2012;7(11):e49266. doi: 10.1371/journal.pone.0049266. Epub 2012 Nov 8.
10
Wavelet based motion artifact removal for Functional Near Infrared Spectroscopy.
Annu Int Conf IEEE Eng Med Biol Soc. 2010;2010:5-8. doi: 10.1109/IEMBS.2010.5626589.

引用本文的文献

1
An Ultralow-Power Real-Time Machine Learning Based fNIRS Motion Artifacts Detection.
IEEE Trans Very Large Scale Integr VLSI Syst. 2024 Jan 30;32(4):763-773. doi: 10.1109/TVLSI.2024.3356161. eCollection 2024 Apr.
4
Motion artifacts removal and evaluation techniques for functional near-infrared spectroscopy signals: A review.
Front Neurosci. 2022 Oct 3;16:878750. doi: 10.3389/fnins.2022.878750. eCollection 2022.
7
NIRS-ICA: A MATLAB Toolbox for Independent Component Analysis Applied in fNIRS Studies.
Front Neuroinform. 2021 Jul 14;15:683735. doi: 10.3389/fninf.2021.683735. eCollection 2021.
8
The Role of the Prefrontal Cortex and Functional Connectivity during Maritime Operations: An fNIRS study.
Brain Behav. 2021 Jan;11(1):e01910. doi: 10.1002/brb3.1910. Epub 2020 Nov 4.
10
Two-Person Approaches to Studying Social Interaction in Psychiatry: Uses and Clinical Relevance.
Front Psychiatry. 2020 Apr 24;11:301. doi: 10.3389/fpsyt.2020.00301. eCollection 2020.

本文引用的文献

1
Validity and reliability of the iPhone to measure rib hump in scoliosis.
J Pediatr Orthop. 2014 Dec;34(8):774-9. doi: 10.1097/BPO.0000000000000195.
2
Neurobiological basis of head motion in brain imaging.
Proc Natl Acad Sci U S A. 2014 Apr 22;111(16):6058-62. doi: 10.1073/pnas.1317424111. Epub 2014 Apr 7.
3
The smartphone brain scanner: a portable real-time neuroimaging system.
PLoS One. 2014 Feb 5;9(2):e86733. doi: 10.1371/journal.pone.0086733. eCollection 2014.
4
Motion artifacts in functional near-infrared spectroscopy: a comparison of motion correction techniques applied to real cognitive data.
Neuroimage. 2014 Jan 15;85 Pt 1(0 1):181-91. doi: 10.1016/j.neuroimage.2013.04.082. Epub 2013 Apr 29.
7
Further improvement in reducing superficial contamination in NIRS using double short separation measurements.
Neuroimage. 2014 Jan 15;85 Pt 1(0 1):127-35. doi: 10.1016/j.neuroimage.2013.01.073. Epub 2013 Feb 9.
8
A novel application for the detection of an irregular pulse using an iPhone 4S in patients with atrial fibrillation.
Heart Rhythm. 2013 Mar;10(3):315-9. doi: 10.1016/j.hrthm.2012.12.001. Epub 2012 Dec 6.
9
A low-cost mobile adaptive tracking system for chronic pulmonary patients in home environment.
Telemed J E Health. 2013 Jan;19(1):24-30. doi: 10.1089/tmj.2012.0056. Epub 2012 Dec 6.
10
Smartphone-based solutions for fall detection and prevention: the FARSEEING approach.
Z Gerontol Geriatr. 2012 Dec;45(8):722-7. doi: 10.1007/s00391-012-0404-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验