Sherafati Arefeh, Snyder Abraham Z, Eggebrecht Adam T, Bergonzi Karla M, Burns-Yocum Tracy M, Lugar Heather M, Ferradal Silvina L, Robichaux-Viehoever Amy, Smyser Christopher D, Palanca Ben J, Hershey Tamara, Culver Joseph P
Department of Physics, Washington University in St. Louis, St. Louis, Missouri, USA.
Department of Radiology, Washington University School of Medicine in St, St. Louis, Missouri, USA.
Hum Brain Mapp. 2020 Oct 1;41(14):4093-4112. doi: 10.1002/hbm.25111. Epub 2020 Jul 10.
Motion-induced artifacts can significantly corrupt optical neuroimaging, as in most neuroimaging modalities. For high-density diffuse optical tomography (HD-DOT) with hundreds to thousands of source-detector pair measurements, motion detection methods are underdeveloped relative to both functional magnetic resonance imaging (fMRI) and standard functional near-infrared spectroscopy (fNIRS). This limitation restricts the application of HD-DOT in many challenging imaging situations and subject populations (e.g., bedside monitoring and children). Here, we evaluated a new motion detection method for multi-channel optical imaging systems that leverages spatial patterns across measurement channels. Specifically, we introduced a global variance of temporal derivatives (GVTD) metric as a motion detection index. We showed that GVTD strongly correlates with external measures of motion and has high sensitivity and specificity to instructed motion-with an area under the receiver operator characteristic curve of 0.88, calculated based on five different types of instructed motion. Additionally, we showed that applying GVTD-based motion censoring on both hearing words task and resting state HD-DOT data with natural head motion results in an improved spatial similarity to fMRI mapping. We then compared the GVTD similarity scores with several commonly used motion correction methods described in the fNIRS literature, including correlation-based signal improvement (CBSI), temporal derivative distribution repair (TDDR), wavelet filtering, and targeted principal component analysis (tPCA). We find that GVTD motion censoring on HD-DOT data outperforms other methods and results in spatial maps more similar to those of matched fMRI data.
与大多数神经成像方式一样,运动诱发的伪影会严重影响光学神经成像。对于具有数百到数千对源探测器测量的高密度扩散光学断层扫描(HD-DOT),相对于功能磁共振成像(fMRI)和标准功能近红外光谱(fNIRS),运动检测方法仍未充分发展。这一限制阻碍了HD-DOT在许多具有挑战性的成像情况和受试者群体(如床边监测和儿童)中的应用。在此,我们评估了一种用于多通道光学成像系统的新运动检测方法,该方法利用测量通道间的空间模式。具体而言,我们引入了时间导数的全局方差(GVTD)指标作为运动检测指数。我们表明,GVTD与外部运动测量密切相关,对指令运动具有高灵敏度和特异性——基于五种不同类型的指令运动计算得出的受试者工作特征曲线下面积为0.88。此外,我们表明,对带有自然头部运动的听词任务和静息状态HD-DOT数据应用基于GVTD的运动审查,会使与fMRI映射的空间相似性得到改善。然后,我们将GVTD相似性分数与fNIRS文献中描述的几种常用运动校正方法进行了比较,包括基于相关性的信号改善(CBSI)、时间导数分布修复(TDDR)、小波滤波和靶向主成分分析(tPCA)。我们发现,对HD-DOT数据进行GVTD运动审查优于其他方法,并且生成的空间图谱与匹配的fMRI数据更相似。