Suppr超能文献

代谢组学在耐药性乳腺癌研究中的应用。

Application of metabolomics in drug resistant breast cancer research.

作者信息

Shajahan-Haq Ayesha N, Cheema Mehar S, Clarke Robert

机构信息

Lombardi Comprehensive Cancer Center and Department of Oncology, Georgetown University School of Medicine, 3970 Reservoir Road NW, Washington, DC 20057, USA.

出版信息

Metabolites. 2015 Feb 16;5(1):100-18. doi: 10.3390/metabo5010100.

Abstract

The metabolic profiles of breast cancer cells are different from normal mammary epithelial cells. Breast cancer cells that gain resistance to therapeutic interventions can reprogram their endogenous metabolism in order to adapt and proliferate despite high oxidative stress and hypoxic conditions. Drug resistance in breast cancer, regardless of subgroups, is a major clinical setback. Although recent advances in genomics and proteomics research has given us a glimpse into the heterogeneity that exists even within subgroups, the ability to precisely predict a tumor's response to therapy remains elusive. Metabolomics as a quantitative, high through put technology offers promise towards devising new strategies to establish predictive, diagnostic and prognostic markers of breast cancer. Along with other "omics" technologies that include genomics, transcriptomics, and proteomics, metabolomics fits into the puzzle of a comprehensive systems biology approach to understand drug resistance in breast cancer. In this review, we highlight the challenges facing successful therapeutic treatment of breast cancer and the innovative approaches that metabolomics offers to better understand drug resistance in cancer.

摘要

乳腺癌细胞的代谢谱不同于正常乳腺上皮细胞。对治疗干预产生耐药性的乳腺癌细胞可以重新编程其内源代谢,以便在高氧化应激和低氧条件下仍能适应并增殖。无论乳腺癌的亚型如何,耐药性都是一个重大的临床障碍。尽管基因组学和蛋白质组学研究的最新进展让我们得以一窥即使在亚型内部也存在的异质性,但精确预测肿瘤对治疗反应的能力仍然难以捉摸。代谢组学作为一种定量的高通量技术,有望为设计新策略以建立乳腺癌的预测、诊断和预后标志物提供帮助。与包括基因组学、转录组学和蛋白质组学在内的其他“组学”技术一起,代谢组学融入了全面系统生物学方法的拼图中,以理解乳腺癌的耐药性。在本综述中,我们强调了乳腺癌成功治疗面临的挑战以及代谢组学为更好地理解癌症耐药性所提供的创新方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76cf/4381292/437b0d818eed/metabolites-05-00100-g001.jpg

相似文献

1
Application of metabolomics in drug resistant breast cancer research.
Metabolites. 2015 Feb 16;5(1):100-18. doi: 10.3390/metabo5010100.
3
"Omics" in pharmaceutical research: overview, applications, challenges, and future perspectives.
Chin J Nat Med. 2015 Jan;13(1):3-21. doi: 10.1016/S1875-5364(15)60002-4.
4
Integrating omics to unravel the stress-response mechanisms in probiotic bacteria: Approaches, challenges, and prospects.
Crit Rev Food Sci Nutr. 2017 Nov 2;57(16):3464-3471. doi: 10.1080/10408398.2015.1136805.
5
"Omics" in oral cancer: New approaches for biomarker discovery.
Arch Oral Biol. 2018 Mar;87:15-34. doi: 10.1016/j.archoralbio.2017.12.003. Epub 2017 Dec 8.
6
Prognostic and Predictive Biomarkers in Cancer.
Curr Cancer Drug Targets. 2014;14(5):477-504. doi: 10.2174/1568009614666140506111118.
8
'Omics Approaches in Breast Cancer Research and Clinical Practice.
Adv Anat Pathol. 2016 Nov;23(6):356-367. doi: 10.1097/PAP.0000000000000128.
9
New omics information for clinical trial utility in the primary setting.
J Natl Cancer Inst Monogr. 2011;2011(43):128-33. doi: 10.1093/jncimonographs/lgr032.
10
CHO-Omics Review: The Impact of Current and Emerging Technologies on Chinese Hamster Ovary Based Bioproduction.
Biotechnol J. 2018 Mar;13(3):e1700227. doi: 10.1002/biot.201700227. Epub 2017 Nov 15.

引用本文的文献

2
Oxidative Stress in Breast Cancer: A Biochemical Map of Reactive Oxygen Species Production.
Curr Issues Mol Biol. 2024 May 13;46(5):4646-4687. doi: 10.3390/cimb46050282.
3
The Interplay between Microbiota and Chemotherapy-Derived Metabolites in Breast Cancer.
Metabolites. 2023 May 28;13(6):703. doi: 10.3390/metabo13060703.
4
When cancer drug resistance meets metabolomics (bulk, single-cell and/or spatial): Progress, potential, and perspective.
Front Oncol. 2023 Jan 6;12:1054233. doi: 10.3389/fonc.2022.1054233. eCollection 2022.
7
Emerging Roles of Ceramides in Breast Cancer Biology and Therapy.
Int J Mol Sci. 2022 Sep 23;23(19):11178. doi: 10.3390/ijms231911178.
8
Metabolomics and EMT Markers of Breast Cancer: A Crosstalk and Future Perspective.
Pathophysiology. 2022 May 27;29(2):200-222. doi: 10.3390/pathophysiology29020017.

本文引用的文献

2
Differential expression of enzymes associated with serine/glycine metabolism in different breast cancer subtypes.
PLoS One. 2014 Jun 30;9(6):e101004. doi: 10.1371/journal.pone.0101004. eCollection 2014.
3
P4 medicine needs P4 education.
Curr Pharm Des. 2014;20(38):6071-2. doi: 10.2174/1381612820666140314145445.
4
Hexokinase 2 overexpression promotes the proliferation and survival of laryngeal squamous cell carcinoma.
Tumour Biol. 2014 Apr;35(4):3743-53. doi: 10.1007/s13277-013-1496-2. Epub 2013 Dec 21.
5
Participatory medicine: a driving force for revolutionizing healthcare.
Genome Med. 2013 Dec 23;5(12):110. doi: 10.1186/gm514. eCollection 2013.
6
Using molecular profiles to tailor treatment in breast cancer: are they ready for prime time?
Curr Opin Obstet Gynecol. 2014 Feb;26(1):21-6. doi: 10.1097/GCO.0000000000000041.
8
Tumor glycolysis as a target for cancer therapy: progress and prospects.
Mol Cancer. 2013 Dec 3;12:152. doi: 10.1186/1476-4598-12-152.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验