Suppr超能文献

所有时刻的效率统计:有限功率下的卡诺极限。

Efficiency statistics at all times: Carnot limit at finite power.

作者信息

Polettini M, Verley G, Esposito M

机构信息

Complex Systems and Statistical Mechanics, Physics and Materials Research Unit, University of Luxembourg, 162a Avenue de la Faïencerie, L-1511 Luxembourg, Luxembourg.

出版信息

Phys Rev Lett. 2015 Feb 6;114(5):050601. doi: 10.1103/PhysRevLett.114.050601. Epub 2015 Feb 3.

Abstract

We derive the statistics of the efficiency under the assumption that thermodynamic fluxes fluctuate with normal law, parametrizing it in terms of time, macroscopic efficiency, and a coupling parameter ζ. It has a peculiar behavior: no moments, one sub-, and one super-Carnot maxima corresponding to reverse operating regimes (engine or pump), the most probable efficiency decreasing in time. The limit ζ→0 where the Carnot bound can be saturated gives rise to two extreme situations, one where the machine works at its macroscopic efficiency, with Carnot limit corresponding to no entropy production, and one where for a transient time scaling like 1/ζ microscopic fluctuations are enhanced in such a way that the most probable efficiency approaches the Carnot limit at finite entropy production.

摘要

我们在热力学通量按正态规律波动的假设下推导效率的统计量,用时间、宏观效率和耦合参数ζ对其进行参数化。它具有独特的行为:没有矩,对应于反向运行模式(发动机或泵)有一个次卡诺极大值和一个超卡诺极大值,最概然效率随时间降低。在ζ→0的极限情况下,卡诺界限可以被饱和,这会产生两种极端情况,一种是机器以其宏观效率运行,卡诺极限对应于无熵产生,另一种是在类似于1/ζ的瞬态时间尺度上,微观涨落增强,使得最概然效率在有限熵产生时接近卡诺极限。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验