Suppr超能文献

半胱氨酸通过产生过氧化氢诱导脑胶质母细胞瘤线粒体还原性应激。

Cysteine induces mitochondrial reductive stress in glioblastoma through hydrogen peroxide production.

机构信息

Department of Neurology, Division of Neuro-Oncology, Weill Cornell Medicine, Cornell University, New York, NY 10021.

Sandra and Edward Meyer Cancer Center, Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021.

出版信息

Proc Natl Acad Sci U S A. 2024 Feb 20;121(8):e2317343121. doi: 10.1073/pnas.2317343121. Epub 2024 Feb 15.

Abstract

Glucose and amino acid metabolism are critical for glioblastoma (GBM) growth, but little is known about the specific metabolic alterations in GBM that are targetable with FDA-approved compounds. To investigate tumor metabolism signatures unique to GBM, we interrogated The Cancer Genome Atlas for alterations in glucose and amino acid signatures in GBM relative to other human cancers and found that GBM exhibits the highest levels of cysteine and methionine pathway gene expression of 32 human cancers. Treatment of patient-derived GBM cells with the FDA-approved single cysteine compound N-acetylcysteine (NAC) reduced GBM cell growth and mitochondrial oxygen consumption, which was worsened by glucose starvation. Normal brain cells and other cancer cells showed no response to NAC. Mechanistic experiments revealed that cysteine compounds induce rapid mitochondrial HO production and reductive stress in GBM cells, an effect blocked by oxidized glutathione, thioredoxin, and redox enzyme overexpression. From analysis of the clinical proteomic tumor analysis consortium (CPTAC) database, we found that GBM cells exhibit lower expression of mitochondrial redox enzymes than four other cancers whose proteomic data are available in CPTAC. Knockdown of mitochondrial thioredoxin-2 in lung cancer cells induced NAC susceptibility, indicating the importance of mitochondrial redox enzyme expression in mitigating reductive stress. Intraperitoneal treatment of mice bearing orthotopic GBM xenografts with a two-cysteine peptide induced HO in brain tumors in vivo. These findings indicate that GBM is uniquely susceptible to NAC-driven reductive stress and could synergize with glucose-lowering treatments for GBM.

摘要

葡萄糖和氨基酸代谢对胶质母细胞瘤(GBM)的生长至关重要,但对于可以用 FDA 批准的化合物靶向治疗的 GBM 具体代谢改变知之甚少。为了研究 GBM 特有的肿瘤代谢特征,我们在癌症基因组图谱(TCGA)中研究了 GBM 中葡萄糖和氨基酸特征的改变与其他人类癌症的关系,发现 GBM 表现出 32 种人类癌症中最高水平的半胱氨酸和蛋氨酸途径基因表达。用 FDA 批准的单一半胱氨酸化合物 N-乙酰半胱氨酸(NAC)治疗患者来源的 GBM 细胞,可降低 GBM 细胞的生长和线粒体耗氧量,而在葡萄糖饥饿时则会加剧这种情况。正常脑细胞和其他癌细胞对 NAC 没有反应。机制实验表明,半胱氨酸化合物在 GBM 细胞中诱导快速的线粒体 HO 产生和还原性应激,这一效应可被氧化型谷胱甘肽、硫氧还蛋白和氧化还原酶过表达所阻断。从临床蛋白质组肿瘤分析协会(CPTAC)数据库的分析中,我们发现 GBM 细胞表现出比其他四种癌症更低的线粒体氧化还原酶表达,而这四种癌症的蛋白质组数据可在 CPTAC 中获得。在肺癌细胞中敲低线粒体硫氧还蛋白-2 可诱导 NAC 敏感性,表明线粒体氧化还原酶表达在减轻还原性应激方面的重要性。用含有两个半胱氨酸的肽对荷有原位 GBM 异种移植瘤的小鼠进行腹腔内治疗,可在体内诱导脑肿瘤中的 HO。这些发现表明 GBM 对 NAC 驱动的还原性应激特别敏感,并且可能与降低 GBM 中的葡萄糖水平的治疗方法协同作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c88b/10895255/4fadee28d327/pnas.2317343121fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验