Yang Yunze, Yu Hui, Shan Xiaonan, Wang Wei, Liu Xianwei, Wang Shaopeng, Tao Nongjian
Center for Biosensors and Bioelectronics, Biodesign Institute, Arizona State University, Tempe, Arizona, 85287, USA.
School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona, 85287, USA.
Small. 2015 Jun 24;11(24):2878-84. doi: 10.1002/smll.201403016. Epub 2015 Feb 19.
Imaging and tracking of nano- and micrometer-sized organelles in cells with nanometer precision is crucial for understanding cellular behaviors at the molecular scale. Because of the fast intracellular dynamic processes, the imaging and tracking method must also be fast. In addition, to ensure that the observed dynamics is relevant to the native functions, it is critical to keep the cells under their native states. Here, a plasmonics-based imaging technique is demonstrated for studying the dynamics of organelles in 3D with high localization precision (5 nm) and temporal (10 ms) resolution. The technique is label-free and can track subcellular structures in the native state of the cells. Using the technique, nanometer steps of organelle (e.g., mitochondria) transportation are observed along neurite microtubules in primary neurons, and the 3D structure of neurite microtubule bundles is reconstructed at the nanometer scale from the tracks of the moving organelles.
以纳米精度对细胞中的纳米和微米级细胞器进行成像和追踪,对于在分子尺度上理解细胞行为至关重要。由于细胞内动态过程快速,成像和追踪方法也必须快速。此外,为确保观察到的动态与天然功能相关,使细胞保持其天然状态至关重要。在此,展示了一种基于等离子体激元的成像技术,用于以高定位精度(5纳米)和时间(10毫秒)分辨率研究三维细胞器的动态。该技术无需标记,可在细胞的天然状态下追踪亚细胞结构。利用该技术,在原代神经元中观察到细胞器(如线粒体)沿神经突微管的纳米级移动步骤,并根据移动细胞器的轨迹在纳米尺度上重建了神经突微管束的三维结构。