Suppr超能文献

一项提议:增殖细胞核抗原作为新复制DNA标志物的作用演变

A proposal: Evolution of PCNA's role as a marker of newly replicated DNA.

作者信息

Georgescu Roxana, Langston Lance, O'Donnell Mike

机构信息

Rockefeller University and HHMI, 1230 York Avenue, Box 228, New York, NY 10065, United States.

Rockefeller University and HHMI, 1230 York Avenue, Box 228, New York, NY 10065, United States.

出版信息

DNA Repair (Amst). 2015 May;29:4-15. doi: 10.1016/j.dnarep.2015.01.015. Epub 2015 Feb 9.

Abstract

Processivity clamps that hold DNA polymerases to DNA for processivity were the first proteins known to encircle the DNA duplex. At the time, polymerase processivity was thought to be the only function of ring shaped processivity clamps. But studies from many laboratories have identified numerous proteins that bind and function with sliding clamps. Among these processes are mismatch repair and nucleosome assembly. Interestingly, there exist polymerases that are highly processive and do not require clamps. Hence, DNA polymerase processivity does not intrinsically require that sliding clamps evolved for this purpose. We propose that polymerases evolved to require clamps as a way of ensuring that clamps are deposited on newly replicated DNA. These clamps are then used on the newly replicated daughter strands, for processes important to genomic integrity, such as mismatch repair and the assembly of nucleosomes to maintain epigenetic states of replicating cells during development.

摘要

使DNA聚合酶与DNA结合以实现持续合成能力的持续合成能力钳是最早被发现能环绕DNA双链的蛋白质。当时,聚合酶的持续合成能力被认为是环形持续合成能力钳的唯一功能。但许多实验室的研究已经鉴定出众多与滑动钳结合并发挥作用的蛋白质。这些过程包括错配修复和核小体组装。有趣的是,存在一些具有高度持续合成能力且不需要钳的聚合酶。因此,DNA聚合酶的持续合成能力本质上并不要求滑动钳是为此目的而进化的。我们提出,聚合酶进化到需要钳,是作为一种确保钳沉积在新复制的DNA上的方式。然后这些钳在新复制的子链上用于对基因组完整性很重要的过程,比如错配修复以及在发育过程中组装核小体以维持复制细胞的表观遗传状态。

相似文献

1
A proposal: Evolution of PCNA's role as a marker of newly replicated DNA.
DNA Repair (Amst). 2015 May;29:4-15. doi: 10.1016/j.dnarep.2015.01.015. Epub 2015 Feb 9.
3
Water skating: How polymerase sliding clamps move on DNA.
FEBS J. 2021 Dec;288(24):7256-7262. doi: 10.1111/febs.15740. Epub 2021 Feb 18.
4
The ring-type polymerase sliding clamp family.
Genome Biol. 2001;2(1):REVIEWS3001. doi: 10.1186/gb-2001-2-1-reviews3001. Epub 2001 Jan 9.
5
Cellular DNA replicases: components and dynamics at the replication fork.
Annu Rev Biochem. 2005;74:283-315. doi: 10.1146/annurev.biochem.73.011303.073859.
6
Structural and functional similarities of prokaryotic and eukaryotic DNA polymerase sliding clamps.
Nucleic Acids Res. 1995 Sep 25;23(18):3613-20. doi: 10.1093/nar/23.18.3613.
7
Evolution and origin of sliding clamp in bacteria, archaea and eukarya.
PLoS One. 2021 Aug 11;16(8):e0241093. doi: 10.1371/journal.pone.0241093. eCollection 2021.
8
The Many Roles of PCNA in Eukaryotic DNA Replication.
Enzymes. 2016;39:231-54. doi: 10.1016/bs.enz.2016.03.003. Epub 2016 Apr 19.
9
The replication clamp-loading machine at work in the three domains of life.
Nat Rev Mol Cell Biol. 2006 Oct;7(10):751-61. doi: 10.1038/nrm2022. Epub 2006 Sep 6.
10
Interaction of the beta sliding clamp with MutS, ligase, and DNA polymerase I.
Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8376-80. doi: 10.1073/pnas.121009498.

引用本文的文献

1
Prime Editing in Dividing and Quiescent Cells.
Int J Mol Sci. 2025 Apr 11;26(8):3596. doi: 10.3390/ijms26083596.
2
Structural and Evolutionary Analysis of Proteins Endowed with a Nucleotidyltransferase, or Non-canonical Palm, Catalytic Domain.
J Mol Evol. 2024 Dec;92(6):799-814. doi: 10.1007/s00239-024-10207-7. Epub 2024 Sep 19.
3
Structures of the human leading strand Polε-PCNA holoenzyme.
Nat Commun. 2024 Sep 8;15(1):7847. doi: 10.1038/s41467-024-52257-x.
4
The effect of oral bacterial infection on DNA damage response in host cells.
Am J Cancer Res. 2023 Jul 15;13(7):3157-3168. eCollection 2023.
5
From Processivity to Genome Maintenance: The Many Roles of Sliding Clamps.
Genes (Basel). 2022 Nov 7;13(11):2058. doi: 10.3390/genes13112058.
6
Water skating: How polymerase sliding clamps move on DNA.
FEBS J. 2021 Dec;288(24):7256-7262. doi: 10.1111/febs.15740. Epub 2021 Feb 18.
7
Structure of eukaryotic DNA polymerase δ bound to the PCNA clamp while encircling DNA.
Proc Natl Acad Sci U S A. 2020 Dec 1;117(48):30344-30353. doi: 10.1073/pnas.2017637117. Epub 2020 Nov 17.
9
Ctf4 organizes sister replisomes and Pol α into a replication factory.
Elife. 2019 Oct 7;8:e47405. doi: 10.7554/eLife.47405.
10
Chromosomes trapped in micronuclei are liable to segregation errors.
J Cell Sci. 2018 Jul 9;131(13):jcs214742. doi: 10.1242/jcs.214742.

本文引用的文献

2
Delivering nonidentical twins.
Nat Struct Mol Biol. 2014 Aug;21(8):649-51. doi: 10.1038/nsmb.2852. Epub 2014 Jul 6.
3
Mechanism of asymmetric polymerase assembly at the eukaryotic replication fork.
Nat Struct Mol Biol. 2014 Aug;21(8):664-70. doi: 10.1038/nsmb.2851. Epub 2014 Jul 6.
4
PCNA and Msh2-Msh6 activate an Mlh1-Pms1 endonuclease pathway required for Exo1-independent mismatch repair.
Mol Cell. 2014 Jul 17;55(2):291-304. doi: 10.1016/j.molcel.2014.04.034. Epub 2014 Jun 26.
5
A Ctf4 trimer couples the CMG helicase to DNA polymerase α in the eukaryotic replisome.
Nature. 2014 Jun 12;510(7504):293-297. doi: 10.1038/nature13234. Epub 2014 May 4.
6
An overview of Y-Family DNA polymerases and a case study of human DNA polymerase η.
Biochemistry. 2014 May 6;53(17):2793-803. doi: 10.1021/bi500019s. Epub 2014 Apr 23.
7
Carl Woese's vision of cellular evolution and the domains of life.
RNA Biol. 2014;11(3):197-204. doi: 10.4161/rna.27673. Epub 2014 Jan 16.
8
Structural basis for processive DNA synthesis by yeast DNA polymerase ɛ.
Nat Struct Mol Biol. 2014 Jan;21(1):49-55. doi: 10.1038/nsmb.2712. Epub 2013 Dec 1.
9
Interaction between human Ctf4 and the Cdc45/Mcm2-7/GINS (CMG) replicative helicase.
Proc Natl Acad Sci U S A. 2013 Dec 3;110(49):19760-5. doi: 10.1073/pnas.1320202110. Epub 2013 Nov 19.
10
Structures of human primase reveal design of nucleotide elongation site and mode of Pol α tethering.
Proc Natl Acad Sci U S A. 2013 Oct 1;110(40):15961-6. doi: 10.1073/pnas.1311185110. Epub 2013 Sep 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验