Lee Kyung-Eun, Park Hyun-Seok
Ewha Information and Telecommunication Institute, Ewha Womans University, Seoul 120-750, Korea. ; Bioinformatics Laboratory, School of Engineering, Ewha Womans University, Seoul 120-750, Korea.
Ewha Information and Telecommunication Institute, Ewha Womans University, Seoul 120-750, Korea. ; Bioinformatics Laboratory, School of Engineering, Ewha Womans University, Seoul 120-750, Korea. ; Center for Convergence Research of Advanced Technologies, Ewha Womans University, Seoul 120-750, Korea.
Genomics Inform. 2014 Dec;12(4):145-50. doi: 10.5808/GI.2014.12.4.145. Epub 2014 Dec 31.
Recent technical advances, such as chromatin immunoprecipitation combined with DNA microarrays (ChIp-chip) and chromatin immunoprecipitation-sequencing (ChIP-seq), have generated large quantities of high-throughput data. Considering that epigenomic datasets are arranged over chromosomes, their analysis must account for spatial or temporal characteristics. In that sense, simple clustering or classification methodologies are inadequate for the analysis of multi-track ChIP-chip or ChIP-seq data. Approaches that are based on hidden Markov models (HMMs) can integrate dependencies between directly adjacent measurements in the genome. Here, we review three HMM-based studies that have contributed to epigenetic research, from a computational perspective. We also give a brief tutorial on HMM modelling-targeted at bioinformaticians who are new to the field.
近期的技术进展,如染色质免疫沉淀结合DNA微阵列(ChIp-chip)和染色质免疫沉淀测序(ChIP-seq),已经产生了大量的高通量数据。鉴于表观基因组数据集是在染色体上排列的,其分析必须考虑空间或时间特征。从这个意义上讲,简单的聚类或分类方法不足以分析多通道ChIp-chip或ChIP-seq数据。基于隐马尔可夫模型(HMM)的方法可以整合基因组中直接相邻测量值之间的依赖性。在这里,我们从计算角度回顾三项基于HMM的研究,这些研究对表观遗传学研究做出了贡献。我们还针对该领域新手的生物信息学家,提供了一个关于HMM建模的简要教程。