Suppr超能文献

分裂型Cas9酶复合物的合理设计。

Rational design of a split-Cas9 enzyme complex.

作者信息

Wright Addison V, Sternberg Samuel H, Taylor David W, Staahl Brett T, Bardales Jorge A, Kornfeld Jack E, Doudna Jennifer A

机构信息

Department of Molecular and Cell Biology.

Department of Chemistry.

出版信息

Proc Natl Acad Sci U S A. 2015 Mar 10;112(10):2984-9. doi: 10.1073/pnas.1501698112. Epub 2015 Feb 23.

Abstract

Cas9, an RNA-guided DNA endonuclease found in clustered regularly interspaced short palindromic repeats (CRISPR) bacterial immune systems, is a versatile tool for genome editing, transcriptional regulation, and cellular imaging applications. Structures of Streptococcus pyogenes Cas9 alone or bound to single-guide RNA (sgRNA) and target DNA revealed a bilobed protein architecture that undergoes major conformational changes upon guide RNA and DNA binding. To investigate the molecular determinants and relevance of the interlobe rearrangement for target recognition and cleavage, we designed a split-Cas9 enzyme in which the nuclease lobe and α-helical lobe are expressed as separate polypeptides. Although the lobes do not interact on their own, the sgRNA recruits them into a ternary complex that recapitulates the activity of full-length Cas9 and catalyzes site-specific DNA cleavage. The use of a modified sgRNA abrogates split-Cas9 activity by preventing dimerization, allowing for the development of an inducible dimerization system. We propose that split-Cas9 can act as a highly regulatable platform for genome-engineering applications.

摘要

Cas9是一种在成簇规律间隔短回文重复序列(CRISPR)细菌免疫系统中发现的RNA引导的DNA内切酶,是一种用于基因组编辑、转录调控和细胞成像应用的多功能工具。化脓性链球菌Cas9单独或与单向导RNA(sgRNA)和靶DNA结合的结构揭示了一种双叶蛋白结构,该结构在引导RNA和DNA结合时会发生重大构象变化。为了研究叶间重排对靶标识别和切割的分子决定因素及相关性,我们设计了一种分裂Cas9酶,其中核酸酶叶和α-螺旋叶作为单独的多肽表达。尽管这些叶本身不相互作用,但sgRNA将它们募集到一个三元复合物中,该复合物重现了全长Cas9的活性并催化位点特异性DNA切割。使用修饰的sgRNA通过阻止二聚化来消除分裂Cas9的活性,从而允许开发一种诱导二聚化系统。我们提出,分裂Cas9可以作为基因组工程应用的高度可调节平台。

相似文献

1
Rational design of a split-Cas9 enzyme complex.分裂型Cas9酶复合物的合理设计。
Proc Natl Acad Sci U S A. 2015 Mar 10;112(10):2984-9. doi: 10.1073/pnas.1501698112. Epub 2015 Feb 23.
3
Genome editing using Cas9 nickases.使用Cas9切口酶进行基因组编辑。
Methods Enzymol. 2014;546:161-74. doi: 10.1016/B978-0-12-801185-0.00008-8.
4
Programmable DNA cleavage in vitro by Cas9.体外 Cas9 介导的可编程 DNA 切割。
Biochem Soc Trans. 2013 Dec;41(6):1401-6. doi: 10.1042/BST20130164.
7
Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage.准备进行DNA切割的CRISPR-Cas9 R环复合物的结构。
Science. 2016 Feb 19;351(6275):867-71. doi: 10.1126/science.aad8282. Epub 2016 Jan 14.
9
Genome modification by CRISPR/Cas9.利用CRISPR/Cas9进行基因组编辑。
FEBS J. 2014 Dec;281(23):5186-93. doi: 10.1111/febs.13110. Epub 2014 Nov 7.
10
Functional Insights Revealed by the Kinetic Mechanism of CRISPR/Cas9.CRISPR/Cas9 的动力学机制揭示的功能见解。
J Am Chem Soc. 2018 Feb 28;140(8):2971-2984. doi: 10.1021/jacs.7b13047. Epub 2018 Feb 19.

引用本文的文献

2
Intein-mediated split Cas9 for genome editing in plants.用于植物基因组编辑的内含肽介导的分裂型Cas9
Front Genome Ed. 2025 Jan 8;6:1506468. doi: 10.3389/fgeed.2024.1506468. eCollection 2024.
3
DNA-Regulated Multi-Protein Complement Control.DNA调控的多蛋白补体控制
J Am Chem Soc. 2024 Dec 4;146(48):32912-32918. doi: 10.1021/jacs.4c11315. Epub 2024 Nov 21.
4
Dynamic sampling of a surveillance state enables DNA proofreading by Cas9.监测状态的动态采样可实现Cas9对DNA的校对。
Cell Chem Biol. 2025 Feb 20;32(2):267-279.e5. doi: 10.1016/j.chembiol.2024.10.001. Epub 2024 Oct 28.
5
Strategies for improving the genome-editing efficiency of class 2 CRISPR/Cas system.提高2类CRISPR/Cas系统基因组编辑效率的策略。
Heliyon. 2024 Sep 27;10(19):e38588. doi: 10.1016/j.heliyon.2024.e38588. eCollection 2024 Oct 15.
7
CRISPR technology in human diseases.用于人类疾病治疗的CRISPR技术。
MedComm (2020). 2024 Jul 29;5(8):e672. doi: 10.1002/mco2.672. eCollection 2024 Aug.
8
Characterization of NiCas12b for In Vivo Genome Editing.用于体内基因组编辑的 NiCas12b 特性描述。
Adv Sci (Weinh). 2024 Sep;11(36):e2400469. doi: 10.1002/advs.202400469. Epub 2024 Jul 30.

本文引用的文献

3
Guide RNA functional modules direct Cas9 activity and orthogonality.向导 RNA 功能模块指导 Cas9 活性和正交性。
Mol Cell. 2014 Oct 23;56(2):333-339. doi: 10.1016/j.molcel.2014.09.019. Epub 2014 Oct 16.
7
Unravelling the structural and mechanistic basis of CRISPR-Cas systems.解析 CRISPR-Cas 系统的结构和机制基础。
Nat Rev Microbiol. 2014 Jul;12(7):479-92. doi: 10.1038/nrmicro3279. Epub 2014 Jun 9.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验