Suppr超能文献

结合马尔可夫状态模型与实验发现多个隐藏的变构位点。

Discovery of multiple hidden allosteric sites by combining Markov state models and experiments.

作者信息

Bowman Gregory R, Bolin Eric R, Hart Kathryn M, Maguire Brendan C, Marqusee Susan

机构信息

Department of Molecular and Cell Biology, Institute for Quantitative Biosciences, and

Biophysics Graduate Program, University of California, Berkeley, CA 94720.

出版信息

Proc Natl Acad Sci U S A. 2015 Mar 3;112(9):2734-9. doi: 10.1073/pnas.1417811112. Epub 2015 Feb 17.

Abstract

The discovery of drug-like molecules that bind pockets in proteins that are not present in crystallographic structures yet exert allosteric control over activity has generated great interest in designing pharmaceuticals that exploit allosteric effects. However, there have only been a small number of successes, so the therapeutic potential of these pockets--called hidden allosteric sites--remains unclear. One challenge for assessing their utility is that rational drug design approaches require foreknowledge of the target site, but most hidden allosteric sites are only discovered when a small molecule is found to stabilize them. We present a means of decoupling the identification of hidden allosteric sites from the discovery of drugs that bind them by drawing on new developments in Markov state modeling that provide unprecedented access to microsecond- to millisecond-timescale fluctuations of a protein's structure. Visualizing these fluctuations allows us to identify potential hidden allosteric sites, which we then test via thiol labeling experiments. Application of these methods reveals multiple hidden allosteric sites in an important antibiotic target--TEM-1 β-lactamase. This result supports the hypothesis that there are many as yet undiscovered hidden allosteric sites and suggests our methodology can identify such sites, providing a starting point for future drug design efforts. More generally, our results demonstrate the power of using Markov state models to guide experiments.

摘要

发现与蛋白质中未存在于晶体结构中的口袋结合但对活性发挥变构控制作用的类药物分子,引发了人们对设计利用变构效应的药物的浓厚兴趣。然而,成功案例寥寥无几,因此这些口袋(称为隐藏变构位点)的治疗潜力仍不明确。评估其效用的一个挑战在于,合理的药物设计方法需要预先了解目标位点,但大多数隐藏变构位点只有在发现小分子能使其稳定时才会被发现。我们提出了一种方法,通过利用马尔可夫状态建模的新进展,将隐藏变构位点的识别与结合它们的药物的发现解耦,马尔可夫状态建模为蛋白质结构的微秒到毫秒时间尺度波动提供了前所未有的访问途径。可视化这些波动使我们能够识别潜在的隐藏变构位点,然后通过硫醇标记实验进行测试。这些方法的应用揭示了重要抗生素靶点TEM-1β-内酰胺酶中的多个隐藏变构位点。这一结果支持了存在许多尚未发现的隐藏变构位点的假设,并表明我们的方法可以识别此类位点,为未来的药物设计工作提供了一个起点。更普遍地说,我们的结果证明了使用马尔可夫状态模型指导实验的力量。

相似文献

1
Discovery of multiple hidden allosteric sites by combining Markov state models and experiments.
Proc Natl Acad Sci U S A. 2015 Mar 3;112(9):2734-9. doi: 10.1073/pnas.1417811112. Epub 2015 Feb 17.
2
Cooperative Changes in Solvent Exposure Identify Cryptic Pockets, Switches, and Allosteric Coupling.
Biophys J. 2019 Mar 5;116(5):818-830. doi: 10.1016/j.bpj.2018.11.3144. Epub 2019 Jan 25.
3
Equilibrium fluctuations of a single folded protein reveal a multitude of potential cryptic allosteric sites.
Proc Natl Acad Sci U S A. 2012 Jul 17;109(29):11681-6. doi: 10.1073/pnas.1209309109. Epub 2012 Jul 2.
4
Designing small molecules to target cryptic pockets yields both positive and negative allosteric modulators.
PLoS One. 2017 Jun 1;12(6):e0178678. doi: 10.1371/journal.pone.0178678. eCollection 2017.
5
An evolutionarily conserved allosteric site modulates beta-lactamase activity.
J Enzyme Inhib Med Chem. 2016;31(sup3):33-40. doi: 10.1080/14756366.2016.1201813. Epub 2016 Jun 28.
6
Hidden allosteric sites and De-Novo drug design.
Expert Opin Drug Discov. 2022 Mar;17(3):283-295. doi: 10.1080/17460441.2022.2017876. Epub 2021 Dec 21.
7
Modelling proteins' hidden conformations to predict antibiotic resistance.
Nat Commun. 2016 Oct 6;7:12965. doi: 10.1038/ncomms12965.
8
Engineering allosteric regulation into the hinge region of a circularly permuted TEM-1 beta-lactamase.
Protein Eng Des Sel. 2010 Sep;23(9):699-709. doi: 10.1093/protein/gzq041. Epub 2010 Jun 30.
9
Neutron diffraction studies of a class A beta-lactamase Toho-1 E166A/R274N/R276N triple mutant.
J Mol Biol. 2010 Mar 5;396(4):1070-80. doi: 10.1016/j.jmb.2009.12.036. Epub 2009 Dec 28.
10
Discovery of hidden allosteric sites as novel targets for allosteric drug design.
Drug Discov Today. 2018 Feb;23(2):359-365. doi: 10.1016/j.drudis.2017.10.001. Epub 2017 Oct 10.

引用本文的文献

2
Recent computational advances in the identification of cryptic binding sites for drug discovery.
Bioinform Adv. 2025 Jul 1;5(1):vbaf156. doi: 10.1093/bioadv/vbaf156. eCollection 2025.
5
AMUSET-TICA: A Tensor-Based Approach for Identifying Slow Collective Variables in Biomolecular Dynamics.
J Chem Theory Comput. 2025 May 13;21(9):4855-4866. doi: 10.1021/acs.jctc.5c00076. Epub 2025 Apr 20.
6
Allostery in Disease: Anticancer Drugs, Pockets, and the Tumor Heterogeneity Challenge.
J Mol Biol. 2025 Feb 26:169050. doi: 10.1016/j.jmb.2025.169050.
7
Markovian State Models uncover Casein Kinase 1 dynamics that govern circadian period.
bioRxiv. 2025 Jan 22:2025.01.17.633651. doi: 10.1101/2025.01.17.633651.
8
Systematic analysis of biomolecular conformational ensembles with PENSA.
J Chem Phys. 2025 Jan 7;162(1). doi: 10.1063/5.0235544.
9
Predicting multiple conformations of ligand binding sites in proteins suggests that AlphaFold2 may remember too much.
Proc Natl Acad Sci U S A. 2024 Nov 26;121(48):e2412719121. doi: 10.1073/pnas.2412719121. Epub 2024 Nov 20.

本文引用的文献

2
Markov state models of biomolecular conformational dynamics.
Curr Opin Struct Biol. 2014 Apr;25:135-44. doi: 10.1016/j.sbi.2014.04.002. Epub 2014 May 16.
3
The ensemble nature of allostery.
Nature. 2014 Apr 17;508(7496):331-9. doi: 10.1038/nature13001.
4
Computational approaches to mapping allosteric pathways.
Curr Opin Struct Biol. 2014 Apr;25:98-103. doi: 10.1016/j.sbi.2014.02.004. Epub 2014 Mar 22.
5
Kinetic evidence for a two-stage mechanism of protein denaturation by guanidinium chloride.
Proc Natl Acad Sci U S A. 2014 Apr 1;111(13):4856-61. doi: 10.1073/pnas.1315453111. Epub 2014 Mar 17.
6
Druggable protein interaction sites are more predisposed to surface pocket formation than the rest of the protein surface.
PLoS Comput Biol. 2013;9(3):e1002951. doi: 10.1371/journal.pcbi.1002951. Epub 2013 Mar 7.
7
GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit.
Bioinformatics. 2013 Apr 1;29(7):845-54. doi: 10.1093/bioinformatics/btt055. Epub 2013 Feb 13.
8
Proliferation and significance of clinically relevant β-lactamases.
Ann N Y Acad Sci. 2013 Jan;1277:84-90. doi: 10.1111/nyas.12023.
9
The dark energy of proteins comes to light: conformational entropy and its role in protein function revealed by NMR relaxation.
Curr Opin Struct Biol. 2013 Feb;23(1):75-81. doi: 10.1016/j.sbi.2012.11.005. Epub 2012 Dec 13.
10
Equilibrium fluctuations of a single folded protein reveal a multitude of potential cryptic allosteric sites.
Proc Natl Acad Sci U S A. 2012 Jul 17;109(29):11681-6. doi: 10.1073/pnas.1209309109. Epub 2012 Jul 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验