Suppr超能文献

结合马尔可夫状态模型与实验发现多个隐藏的变构位点。

Discovery of multiple hidden allosteric sites by combining Markov state models and experiments.

作者信息

Bowman Gregory R, Bolin Eric R, Hart Kathryn M, Maguire Brendan C, Marqusee Susan

机构信息

Department of Molecular and Cell Biology, Institute for Quantitative Biosciences, and

Biophysics Graduate Program, University of California, Berkeley, CA 94720.

出版信息

Proc Natl Acad Sci U S A. 2015 Mar 3;112(9):2734-9. doi: 10.1073/pnas.1417811112. Epub 2015 Feb 17.

Abstract

The discovery of drug-like molecules that bind pockets in proteins that are not present in crystallographic structures yet exert allosteric control over activity has generated great interest in designing pharmaceuticals that exploit allosteric effects. However, there have only been a small number of successes, so the therapeutic potential of these pockets--called hidden allosteric sites--remains unclear. One challenge for assessing their utility is that rational drug design approaches require foreknowledge of the target site, but most hidden allosteric sites are only discovered when a small molecule is found to stabilize them. We present a means of decoupling the identification of hidden allosteric sites from the discovery of drugs that bind them by drawing on new developments in Markov state modeling that provide unprecedented access to microsecond- to millisecond-timescale fluctuations of a protein's structure. Visualizing these fluctuations allows us to identify potential hidden allosteric sites, which we then test via thiol labeling experiments. Application of these methods reveals multiple hidden allosteric sites in an important antibiotic target--TEM-1 β-lactamase. This result supports the hypothesis that there are many as yet undiscovered hidden allosteric sites and suggests our methodology can identify such sites, providing a starting point for future drug design efforts. More generally, our results demonstrate the power of using Markov state models to guide experiments.

摘要

发现与蛋白质中未存在于晶体结构中的口袋结合但对活性发挥变构控制作用的类药物分子,引发了人们对设计利用变构效应的药物的浓厚兴趣。然而,成功案例寥寥无几,因此这些口袋(称为隐藏变构位点)的治疗潜力仍不明确。评估其效用的一个挑战在于,合理的药物设计方法需要预先了解目标位点,但大多数隐藏变构位点只有在发现小分子能使其稳定时才会被发现。我们提出了一种方法,通过利用马尔可夫状态建模的新进展,将隐藏变构位点的识别与结合它们的药物的发现解耦,马尔可夫状态建模为蛋白质结构的微秒到毫秒时间尺度波动提供了前所未有的访问途径。可视化这些波动使我们能够识别潜在的隐藏变构位点,然后通过硫醇标记实验进行测试。这些方法的应用揭示了重要抗生素靶点TEM-1β-内酰胺酶中的多个隐藏变构位点。这一结果支持了存在许多尚未发现的隐藏变构位点的假设,并表明我们的方法可以识别此类位点,为未来的药物设计工作提供了一个起点。更普遍地说,我们的结果证明了使用马尔可夫状态模型指导实验的力量。

相似文献

5
An evolutionarily conserved allosteric site modulates beta-lactamase activity.一个进化上保守的别构位点调节β-内酰胺酶的活性。
J Enzyme Inhib Med Chem. 2016;31(sup3):33-40. doi: 10.1080/14756366.2016.1201813. Epub 2016 Jun 28.
6
Hidden allosteric sites and De-Novo drug design.隐藏变构位点与从头设计药物
Expert Opin Drug Discov. 2022 Mar;17(3):283-295. doi: 10.1080/17460441.2022.2017876. Epub 2021 Dec 21.

引用本文的文献

本文引用的文献

2
Markov state models of biomolecular conformational dynamics.生物分子构象动力学的马尔可夫状态模型。
Curr Opin Struct Biol. 2014 Apr;25:135-44. doi: 10.1016/j.sbi.2014.04.002. Epub 2014 May 16.
3
The ensemble nature of allostery.变构的整体性。
Nature. 2014 Apr 17;508(7496):331-9. doi: 10.1038/nature13001.
4
Computational approaches to mapping allosteric pathways.绘制变构途径的计算方法。
Curr Opin Struct Biol. 2014 Apr;25:98-103. doi: 10.1016/j.sbi.2014.02.004. Epub 2014 Mar 22.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验