Bowman Gregory R, Bolin Eric R, Hart Kathryn M, Maguire Brendan C, Marqusee Susan
Department of Molecular and Cell Biology, Institute for Quantitative Biosciences, and
Biophysics Graduate Program, University of California, Berkeley, CA 94720.
Proc Natl Acad Sci U S A. 2015 Mar 3;112(9):2734-9. doi: 10.1073/pnas.1417811112. Epub 2015 Feb 17.
The discovery of drug-like molecules that bind pockets in proteins that are not present in crystallographic structures yet exert allosteric control over activity has generated great interest in designing pharmaceuticals that exploit allosteric effects. However, there have only been a small number of successes, so the therapeutic potential of these pockets--called hidden allosteric sites--remains unclear. One challenge for assessing their utility is that rational drug design approaches require foreknowledge of the target site, but most hidden allosteric sites are only discovered when a small molecule is found to stabilize them. We present a means of decoupling the identification of hidden allosteric sites from the discovery of drugs that bind them by drawing on new developments in Markov state modeling that provide unprecedented access to microsecond- to millisecond-timescale fluctuations of a protein's structure. Visualizing these fluctuations allows us to identify potential hidden allosteric sites, which we then test via thiol labeling experiments. Application of these methods reveals multiple hidden allosteric sites in an important antibiotic target--TEM-1 β-lactamase. This result supports the hypothesis that there are many as yet undiscovered hidden allosteric sites and suggests our methodology can identify such sites, providing a starting point for future drug design efforts. More generally, our results demonstrate the power of using Markov state models to guide experiments.
发现与蛋白质中未存在于晶体结构中的口袋结合但对活性发挥变构控制作用的类药物分子,引发了人们对设计利用变构效应的药物的浓厚兴趣。然而,成功案例寥寥无几,因此这些口袋(称为隐藏变构位点)的治疗潜力仍不明确。评估其效用的一个挑战在于,合理的药物设计方法需要预先了解目标位点,但大多数隐藏变构位点只有在发现小分子能使其稳定时才会被发现。我们提出了一种方法,通过利用马尔可夫状态建模的新进展,将隐藏变构位点的识别与结合它们的药物的发现解耦,马尔可夫状态建模为蛋白质结构的微秒到毫秒时间尺度波动提供了前所未有的访问途径。可视化这些波动使我们能够识别潜在的隐藏变构位点,然后通过硫醇标记实验进行测试。这些方法的应用揭示了重要抗生素靶点TEM-1β-内酰胺酶中的多个隐藏变构位点。这一结果支持了存在许多尚未发现的隐藏变构位点的假设,并表明我们的方法可以识别此类位点,为未来的药物设计工作提供了一个起点。更普遍地说,我们的结果证明了使用马尔可夫状态模型指导实验的力量。