文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Evaluation of iron oxide nanoparticle micelles for magnetic particle imaging (MPI) of thrombosis.

作者信息

Starmans Lucas W E, Moonen Rik P M, Aussems-Custers Erica, Daemen Mat J A P, Strijkers Gustav J, Nicolay Klaas, Grüll Holger

机构信息

Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands.

Applied Chemistry, Philips Research, Eindhoven, the Netherlands.

出版信息

PLoS One. 2015 Mar 6;10(3):e0119257. doi: 10.1371/journal.pone.0119257. eCollection 2015.


DOI:10.1371/journal.pone.0119257
PMID:25746677
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC4352001/
Abstract

Magnetic particle imaging (MPI) is an emerging medical imaging modality that directly visualizes magnetic particles in a hot-spot like fashion. We recently developed an iron oxide nanoparticle-micelle (ION-Micelle) platform that allows highly sensitive MPI. The goal of this study was to assess the potential of the ION-Micelles for MPI-based detection of thrombi. To this aim, an in vivo carotid artery thrombosis mouse model was employed and ex vivo magnetic particle spectrometer (MPS) measurements of the carotid arteries were performed. In addition, we studied the effect of functionalization of the ION-Micelle nanoplatform with fibrin-binding peptides (FibPeps) with respect to nanoparticle thrombus uptake and hence thrombus detection. In vivo quantitative MR imaging pre- and post-ION-Micelle injection was performed as reference for visualization of ION-micelle uptake. ION-Micelles significantly decreased T2 values in the thrombi with respect to pre-injection T2 values (p < 0.01) and significantly increased ex vivo MPS thrombus signal with respect to the noninjured, contralateral carotid (p < 0.01). Functionalization of the ION-Micelles with the FibPep peptides did not result in an increased MPS thrombus signal with respect to the non-fibrin binding ION-Micelles. The lack of a significant increased thrombus uptake for the FibPep-ION-Micelles indicates that (non-fibrin-specific) entrapment of nanoparticles in the mesh-like thrombi is the key contributor to thrombus nanoparticle uptake. Therefore, (nontargeted) ION-Micelles might be of value for noninvasive MPI-based diagnosis, characterization and treatment monitoring of thrombosis.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2539/4352001/a0a5464d5c6f/pone.0119257.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2539/4352001/87017611f118/pone.0119257.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2539/4352001/ebb79224fc33/pone.0119257.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2539/4352001/ad999720bcb9/pone.0119257.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2539/4352001/79e6a5b9df48/pone.0119257.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2539/4352001/309f7c32ca70/pone.0119257.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2539/4352001/a0a5464d5c6f/pone.0119257.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2539/4352001/87017611f118/pone.0119257.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2539/4352001/ebb79224fc33/pone.0119257.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2539/4352001/ad999720bcb9/pone.0119257.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2539/4352001/79e6a5b9df48/pone.0119257.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2539/4352001/309f7c32ca70/pone.0119257.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2539/4352001/a0a5464d5c6f/pone.0119257.g006.jpg

相似文献

[1]
Evaluation of iron oxide nanoparticle micelles for magnetic particle imaging (MPI) of thrombosis.

PLoS One. 2015-3-6

[2]
Iron oxide nanoparticle-micelles (ION-micelles) for sensitive (molecular) magnetic particle imaging and magnetic resonance imaging.

PLoS One. 2013-2-20

[3]
Evaluation of 111In-labeled EPep and FibPep as tracers for fibrin SPECT imaging.

Mol Pharm. 2013-11-4

[4]
Hybrid, metal oxide-peptide amphiphile micelles for molecular magnetic resonance imaging of atherosclerosis.

J Nanobiotechnology. 2018-11-15

[5]
Chronic thrombus detection with in vivo magnetic resonance imaging and a fibrin-targeted contrast agent.

Circulation. 2005-9-13

[6]
Fibrin-targeted contrast agent for improvement of in vivo acute thrombus detection with magnetic resonance imaging.

Atherosclerosis. 2005-9

[7]
SPECT imaging of fibrin using fibrin-binding peptides.

Contrast Media Mol Imaging. 2013

[8]
Human erythrocytes as nanoparticle carriers for magnetic particle imaging.

Phys Med Biol. 2010-10-19

[9]
Target-specific paramagnetic and superparamagnetic micelles for molecular MR imaging.

Methods Mol Biol. 2011

[10]
In vivo molecular imaging of acute and subacute thrombosis using a fibrin-binding magnetic resonance imaging contrast agent.

Circulation. 2004-4-27

引用本文的文献

[1]
Gold Mesoporous Silica-Coated Nanoparticles for Quantifying and Qualifying Mesenchymal Stem Cell Distribution; a Proof-of-Concept Study in Large Animals.

ACS Appl Bio Mater. 2025-2-17

[2]
Functional Diversity in Radiolabeled Nanoceramics and Related Biomaterials for the Multimodal Imaging of Tumors.

ACS Bio Med Chem Au. 2023-8-8

[3]
One-Pot, One-Step Synthesis of Drug-Loaded Magnetic Multimicelle Aggregates.

Bioconjug Chem. 2022-5-18

[4]
Theranostic nanoparticles for the management of thrombosis.

Theranostics. 2022

[5]
Coagulation System Activation for Targeting of COVID-19: Insights into Anticoagulants, Vaccine-Loaded Nanoparticles, and Hypercoagulability in COVID-19 Vaccines.

Viruses. 2022-1-24

[6]
Exposure to Iron Oxide Nanoparticles Coated with Phospholipid-Based Polymeric Micelles Induces Renal Transitory Biochemical and Histopathological Changes in Mice.

Materials (Basel). 2021-5-17

[7]
Magnetic Nanoparticles as MRI Contrast Agents.

Top Curr Chem (Cham). 2020-5-7

[8]
Magnetic Nanoparticles in Cancer Therapy and Diagnosis.

Adv Healthc Mater. 2020-5

[9]
A Review of Magnetic Particle Imaging and Perspectives on Neuroimaging.

AJNR Am J Neuroradiol. 2019-1-17

[10]
Applications of nanoparticles in biomedical imaging.

Nanoscale. 2019-1-17

本文引用的文献

[1]
Noncontrast perfusion single-photon emission CT/CT scanning: a new test for the expedited, high-accuracy diagnosis of acute pulmonary embolism.

Chest. 2014-5

[2]
Polyethylene glycol backfilling mitigates the negative impact of the protein corona on nanoparticle cell targeting.

Angew Chem Int Ed Engl. 2014-4-2

[3]
Probing lipid coating dynamics of quantum dot core micelles via Förster resonance energy transfer.

Small. 2013-12-16

[4]
Quantitative T2 mapping of the mouse heart by segmented MLEV phase-cycled T2 preparation.

Magn Reson Med. 2014-8

[5]
Near-infrared fluorescence energy transfer imaging of nanoparticle accumulation and dissociation kinetics in tumor-bearing mice.

ACS Nano. 2013-10-24

[6]
Evaluation of 111In-labeled EPep and FibPep as tracers for fibrin SPECT imaging.

Mol Pharm. 2013-11-4

[7]
MRI artifacts in the ferric chloride thrombus animal model: an alternative solution: preventing MRI artifacts after thrombus induction with a non-ferromagnetic Lewis acid.

J Thromb Haemost. 2013-9

[8]
SPECT imaging of fibrin using fibrin-binding peptides.

Contrast Media Mol Imaging. 2013

[9]
Hyperacute direct thrombus imaging using computed tomography and gold nanoparticles.

Ann Neurol. 2013-3-12

[10]
Iron oxide nanoparticle-micelles (ION-micelles) for sensitive (molecular) magnetic particle imaging and magnetic resonance imaging.

PLoS One. 2013-2-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索