Suppr超能文献

通过室内传感器实现自动化行为映射的早期步骤。

Early Steps in Automated Behavior Mapping via Indoor Sensors.

机构信息

Department of Computer Engineering, Kadir Has University, 34083 Istanbul, Turkey.

Department of Interior Architecture and Environmental Design, Kadir Has University, 34083 Istanbul, Turkey.

出版信息

Sensors (Basel). 2017 Dec 16;17(12):2925. doi: 10.3390/s17122925.

Abstract

Behavior mapping (BM) is a spatial data collection technique in which the locational and behavioral information of a user is noted on a plan layout of the studied environment. Among many indoor positioning technologies, we chose Wi-Fi, BLE beacon and ultra-wide band (UWB) sensor technologies for their popularity and investigated their applicability in BM. We tested three technologies for error ranges and found an average error of 1.39 m for Wi-Fi in a 36 m² test area (6 m × 6 m), 0.86 m for the BLE beacon in a 37.44 m² test area (9.6 m × 3.9 m) and 0.24 m for ultra-wide band sensors in a 36 m² test area (6 m × 6 m). We simulated the applicability of these error ranges for real-time locations by using a behavioral dataset collected from an active learning classroom. We used two UWB tags simultaneously by incorporating a custom-designed ceiling system in a new 39.76 m² test area (7.35 m × 5.41 m). We considered 26 observation points and collected data for 180 s for each point (total 4680) with an average error of 0.2072 m for 23 points inside the test area. Finally, we demonstrated the use of ultra-wide band sensor technology for BM.

摘要

行为映射 (BM) 是一种空间数据采集技术,用于记录用户在研究环境的平面布局中的位置和行为信息。在众多室内定位技术中,我们选择 Wi-Fi、BLE 信标和超宽带 (UWB) 传感器技术,因为它们具有普及性,并研究了它们在 BM 中的适用性。我们测试了三种技术的误差范围,发现 Wi-Fi 在 36 m²测试区域(6 m × 6 m)中的平均误差为 1.39 m,BLE 信标在 37.44 m²测试区域(9.6 m × 3.9 m)中的平均误差为 0.86 m,超宽带传感器在 36 m²测试区域(6 m × 6 m)中的平均误差为 0.24 m。我们通过使用从主动学习教室收集的行为数据集模拟了这些误差范围对实时位置的适用性。我们在一个新的 39.76 m²测试区域(7.35 m × 5.41 m)中同时使用两个 UWB 标签,并结合了一个定制的天花板系统。我们考虑了 26 个观测点,并为每个点收集了 180 秒的数据(总共 4680 个数据点),在测试区域内的 23 个点的平均误差为 0.2072 m。最后,我们展示了超宽带传感器技术在 BM 中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3474/5751591/a3c907740985/sensors-17-02925-g001.jpg

相似文献

1
Early Steps in Automated Behavior Mapping via Indoor Sensors.
Sensors (Basel). 2017 Dec 16;17(12):2925. doi: 10.3390/s17122925.
2
On Indoor Localization Using WiFi, BLE, UWB, and IMU Technologies.
Sensors (Basel). 2023 Oct 20;23(20):8598. doi: 10.3390/s23208598.
3
An Indoor Continuous Positioning Algorithm on the Move by Fusing Sensors and Wi-Fi on Smartphones.
Sensors (Basel). 2015 Dec 11;15(12):31244-67. doi: 10.3390/s151229850.
4
Experimental Evaluation of UWB Indoor Positioning for Sport Postures.
Sensors (Basel). 2018 Jan 9;18(1):168. doi: 10.3390/s18010168.
5
Fusing Bluetooth Beacon Data with Wi-Fi Radiomaps for Improved Indoor Localization.
Sensors (Basel). 2017 Apr 10;17(4):812. doi: 10.3390/s17040812.
6
7
Smart hospital infrastructure: geomagnetic in-hospital medical worker tracking.
J Am Med Inform Assoc. 2021 Mar 1;28(3):477-486. doi: 10.1093/jamia/ocaa204.
9
Optimized CNNs to Indoor Localization through BLE Sensors Using Improved PSO.
Sensors (Basel). 2021 Mar 12;21(6):1995. doi: 10.3390/s21061995.
10
Wi-Fi/MARG Integration for Indoor Pedestrian Localization.
Sensors (Basel). 2016 Dec 10;16(12):2100. doi: 10.3390/s16122100.

引用本文的文献

1
Transducer Technologies for Biosensors and Their Wearable Applications.
Biosensors (Basel). 2022 Jun 2;12(6):385. doi: 10.3390/bios12060385.

本文引用的文献

1
FM-UWB: Towards a Robust, Low-Power Radio for Body Area Networks.
Sensors (Basel). 2017 May 6;17(5):1043. doi: 10.3390/s17051043.
2
Context Matters: Systematic Observation of Place-Based Physical Activity.
Res Q Exerc Sport. 2016 Dec;87(4):334-341. doi: 10.1080/02701367.2016.1234302. Epub 2016 Oct 17.
3
A Tagless Indoor Localization System Based on Capacitive Sensing Technology.
Sensors (Basel). 2016 Sep 7;16(9):1448. doi: 10.3390/s16091448.
4
Ultra Wideband Indoor Positioning Technologies: Analysis and Recent Advances.
Sensors (Basel). 2016 May 16;16(5):707. doi: 10.3390/s16050707.
5
Design, Implementation and Evaluation of an Indoor Navigation System for Visually Impaired People.
Sensors (Basel). 2015 Dec 21;15(12):32168-87. doi: 10.3390/s151229912.
6
7
Walking objectively measured: classifying accelerometer data with GPS and travel diaries.
Med Sci Sports Exerc. 2013 Jul;45(7):1419-28. doi: 10.1249/MSS.0b013e318285f202.
9
2009 C. H. McCloy Lecture. Seeing is believing: observing physical activity and its contexts.
Res Q Exerc Sport. 2010 Jun;81(2):113-22. doi: 10.1080/02701367.2010.10599656.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验