Ginn Helen M, Messerschmidt Marc, Ji Xiaoyun, Zhang Hanwen, Axford Danny, Gildea Richard J, Winter Graeme, Brewster Aaron S, Hattne Johan, Wagner Armin, Grimes Jonathan M, Evans Gwyndaf, Sauter Nicholas K, Sutton Geoff, Stuart David I
Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, Oxfordshire OX3 7BN, UK.
SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA.
Nat Commun. 2015 Mar 9;6:6435. doi: 10.1038/ncomms7435.
The X-ray free-electron laser (XFEL) allows the analysis of small weakly diffracting protein crystals, but has required very many crystals to obtain good data. Here we use an XFEL to determine the room temperature atomic structure for the smallest cytoplasmic polyhedrosis virus polyhedra yet characterized, which we failed to solve at a synchrotron. These protein microcrystals, roughly a micron across, accrue within infected cells. We use a new physical model for XFEL diffraction, which better estimates the experimental signal, delivering a high-resolution XFEL structure (1.75 Å), using fewer crystals than previously required for this resolution. The crystal lattice and protein core are conserved compared with a polyhedrin with less than 10% sequence identity. We explain how the conserved biological phenotype, the crystal lattice, is maintained in the face of extreme environmental challenge and massive evolutionary divergence. Our improved methods should open up more challenging biological samples to XFEL analysis.
X射线自由电子激光(XFEL)能够对小型弱衍射蛋白晶体进行分析,但过去需要大量晶体才能获得良好的数据。在此,我们利用XFEL确定了迄今为止所表征的最小胞质型多角体病毒多角体在室温下的原子结构,而此前我们在同步加速器上未能解析该结构。这些直径约为一微米的蛋白质微晶在受感染细胞内聚集。我们采用了一种新的XFEL衍射物理模型,该模型能更好地估计实验信号,从而在使用比此前达到此分辨率所需晶体数量更少的情况下,获得了高分辨率的XFEL结构(1.75埃)。与序列同一性低于10%的多角体蛋白相比,该晶体的晶格和蛋白质核心是保守的。我们解释了在面临极端环境挑战和巨大进化差异的情况下,保守的生物学表型——晶格是如何得以维持的。我们改进后的方法应能使更多具有挑战性的生物样品接受XFEL分析。