Schönherr Robert, Eichler Nina, Sornaly Fatama A, Boger Juliane, Frevert Anne M, Lahey-Rudolph Janine Mia, Meyer Hannah, Weymar Lisa, Redecke Lars
Institute of Biochemistry, University of Lübeck, Germany.
Center for Free-Electron Laser Science (CFEL), Hamburg, Germany.
FEBS Open Bio. 2025 Apr;15(4):551-562. doi: 10.1002/2211-5463.70020. Epub 2025 Mar 28.
Crystallization of recombinant proteins in living cells is an emerging approach complementing conventional crystallization techniques. Homogeneous microcrystals well suited for serial diffraction experiments at X-ray free-electron lasers and synchrotron sources can be produced in a quasi-native environment, without the need for target protein purification. Several protein structures have already been solved; however, exploiting the full potential of this approach requires a systematic and versatile screening strategy for intracellular crystal growth. Recently, we published InCellCryst, a streamlined pipeline for producing microcrystals within living insect cells. Here, we present the detailed protocol, including optimized target gene expression using a baculovirus vector system, crystal formation, detection, and serial X-ray diffraction directly in the cells. The specific environment within the different cellular compartments acts as a screening parameter to maximize the probability of crystal growth. If successful, diffraction data can be collected 24 days after the start of target gene cloning.
在活细胞中进行重组蛋白结晶是一种新兴的方法,可补充传统的结晶技术。在准天然环境中可以产生非常适合在X射线自由电子激光和同步加速器源上进行连续衍射实验的均匀微晶,而无需对目标蛋白进行纯化。已经解析了几种蛋白质结构;然而,要充分发挥这种方法的潜力,需要一种用于细胞内晶体生长的系统且通用的筛选策略。最近,我们发表了InCellCryst,这是一种用于在活昆虫细胞内产生微晶的简化流程。在这里,我们展示详细的方案,包括使用杆状病毒载体系统优化目标基因表达、晶体形成、检测以及直接在细胞内进行连续X射线衍射。不同细胞区室内的特定环境作为筛选参数,以最大化晶体生长的概率。如果成功,在目标基因克隆开始后24天即可收集衍射数据。