Zang Pengxiao, Wang Jie, Hormel Tristan T, Liu Liang, Huang David, Jia Yali
Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA.
Biomed Opt Express. 2019 Aug 1;10(8):4340-4352. doi: 10.1364/BOE.10.004340.
Quantitative analysis of the peripapillary retinal layers and capillary plexuses from optical coherence tomography (OCT) and OCT angiography images depend on two segmentation tasks - delineating the boundary of the optic disc and delineating the boundaries between retinal layers. Here, we present a method combining a neural network and graph search to perform these two tasks. A comparison of this novel method's segmentation of the disc boundary showed good agreement with the ground truth, achieving an overall Dice similarity coefficient of 0.91 ± 0.04 in healthy and glaucomatous eyes. The absolute error of retinal layer boundaries segmentation in the same cases was 4.10 ± 1.25 µm.
基于光学相干断层扫描(OCT)和OCT血管造影图像对视乳头周围视网膜层和毛细血管丛进行定量分析,依赖于两项分割任务——划定视盘边界以及划定视网膜各层之间的边界。在此,我们提出一种结合神经网络和图搜索的方法来执行这两项任务。该新方法对视盘边界的分割与真实情况对比显示出良好的一致性,在健康眼和青光眼眼中总体Dice相似系数达到0.91±0.04。相同病例中视网膜层边界分割的绝对误差为4.10±1.25 µm。