Suppr超能文献

结合卷积神经网络和多权重图搜索的光学相干断层扫描中视乳头周围视网膜边界的自动分割

Automated segmentation of peripapillary retinal boundaries in OCT combining a convolutional neural network and a multi-weights graph search.

作者信息

Zang Pengxiao, Wang Jie, Hormel Tristan T, Liu Liang, Huang David, Jia Yali

机构信息

Casey Eye Institute, Oregon Health & Science University, Portland, OR 97239, USA.

出版信息

Biomed Opt Express. 2019 Aug 1;10(8):4340-4352. doi: 10.1364/BOE.10.004340.

Abstract

Quantitative analysis of the peripapillary retinal layers and capillary plexuses from optical coherence tomography (OCT) and OCT angiography images depend on two segmentation tasks - delineating the boundary of the optic disc and delineating the boundaries between retinal layers. Here, we present a method combining a neural network and graph search to perform these two tasks. A comparison of this novel method's segmentation of the disc boundary showed good agreement with the ground truth, achieving an overall Dice similarity coefficient of 0.91 ± 0.04 in healthy and glaucomatous eyes. The absolute error of retinal layer boundaries segmentation in the same cases was 4.10 ± 1.25 µm.

摘要

基于光学相干断层扫描(OCT)和OCT血管造影图像对视乳头周围视网膜层和毛细血管丛进行定量分析,依赖于两项分割任务——划定视盘边界以及划定视网膜各层之间的边界。在此,我们提出一种结合神经网络和图搜索的方法来执行这两项任务。该新方法对视盘边界的分割与真实情况对比显示出良好的一致性,在健康眼和青光眼眼中总体Dice相似系数达到0.91±0.04。相同病例中视网膜层边界分割的绝对误差为4.10±1.25 µm。

相似文献

引用本文的文献

3
OCT angiography and its retinal biomarkers [Invited].光学相干断层扫描血管造影及其视网膜生物标志物[特邀文章]
Biomed Opt Express. 2023 Aug 10;14(9):4542-4566. doi: 10.1364/BOE.495627. eCollection 2023 Sep 1.
8
Artificial intelligence in OCT angiography.OCT 血管造影中的人工智能。
Prog Retin Eye Res. 2021 Nov;85:100965. doi: 10.1016/j.preteyeres.2021.100965. Epub 2021 Mar 22.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验