Suppr超能文献

低变异RNA可识别血液中帕金森病的分子特征。

Low-variance RNAs identify Parkinson's disease molecular signature in blood.

作者信息

Chikina Maria D, Gerald Christophe P, Li Xianting, Ge Yongchao, Pincas Hanna, Nair Venugopalan D, Wong Aaron K, Krishnan Arjun, Troyanskaya Olga G, Raymond Deborah, Saunders-Pullman Rachel, Bressman Susan B, Yue Zhenyu, Sealfon Stuart C

机构信息

Departments of Neurology and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA.

Department of Computer Science, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA.

出版信息

Mov Disord. 2015 May;30(6):813-21. doi: 10.1002/mds.26205. Epub 2015 Mar 18.

Abstract

The diagnosis of Parkinson's disease (PD) is usually not established until advanced neurodegeneration leads to clinically detectable symptoms. Previous blood PD transcriptome studies show low concordance, possibly resulting from the use of microarray technology, which has high measurement variation. The Leucine-rich repeat kinase 2 (LRRK2) G2019S mutation predisposes to PD. Using preclinical and clinical studies, we sought to develop a novel statistically motivated transcriptomic-based approach to identify a molecular signature in the blood of Ashkenazi Jewish PD patients, including LRRK2 mutation carriers. Using a digital gene expression platform to quantify 175 messenger RNA (mRNA) markers with low coefficients of variation (CV), we first compared whole-blood transcript levels in mouse models (1) overexpressing wild-type (WT) LRRK2, (2) overexpressing G2019S LRRK2, (3) lacking LRRK2 (knockout), and (4) and in WT controls. We then studied an Ashkenazi Jewish cohort of 34 symptomatic PD patients (both WT LRRK2 and G2019S LRRK2) and 32 asymptomatic controls. The expression profiles distinguished the four mouse groups with different genetic background. In patients, we detected significant differences in blood transcript levels both between individuals differing in LRRK2 genotype and between PD patients and controls. Discriminatory PD markers included genes associated with innate and adaptive immunity and inflammatory disease. Notably, gene expression patterns in levodopa-treated PD patients were significantly closer to those of healthy controls in a dose-dependent manner. We identify whole-blood mRNA signatures correlating with LRRK2 genotype and with PD disease state. This approach may provide insight into pathogenesis and a route to early disease detection.

摘要

帕金森病(PD)通常在晚期神经退行性变导致临床可检测症状出现后才得以确诊。以往的血液PD转录组研究显示一致性较低,这可能是由于使用了具有高测量变异性的微阵列技术所致。富含亮氨酸重复激酶2(LRRK2)的G2019S突变易引发PD。通过临床前和临床研究,我们试图开发一种基于统计学的新型转录组学方法,以识别阿什肯纳兹犹太PD患者血液中的分子特征,包括LRRK2突变携带者。我们使用数字基因表达平台来定量175个变异系数(CV)较低的信使核糖核酸(mRNA)标志物,首先比较了小鼠模型中的全血转录水平:(1)过表达野生型(WT)LRRK2;(2)过表达G2019S LRRK2;(3)缺乏LRRK2(敲除);以及(4)WT对照。然后,我们研究了一个由34名有症状的PD患者(WT LRRK2和G2019S LRRK2)和32名无症状对照组成的阿什肯纳兹犹太队列。表达谱区分了具有不同遗传背景的四个小鼠组。在患者中,我们检测到LRRK2基因型不同的个体之间以及PD患者与对照之间血液转录水平存在显著差异。具有鉴别意义的PD标志物包括与先天性和适应性免疫以及炎症性疾病相关的基因。值得注意的是,左旋多巴治疗的PD患者的基因表达模式以剂量依赖的方式与健康对照的表达模式显著更接近。我们识别出与LRRK2基因型和PD疾病状态相关的全血mRNA特征。这种方法可能为发病机制提供见解,并为疾病早期检测提供途径。

相似文献

9
Frequency of LRRK2 mutations in early- and late-onset Parkinson disease.早发型和晚发型帕金森病中LRRK2突变的频率
Neurology. 2006 Nov 28;67(10):1786-91. doi: 10.1212/01.wnl.0000244345.49809.36. Epub 2006 Oct 18.

引用本文的文献

3
The Potential of to Predict Parkinson's Disease.在预测帕金森病方面的潜力。
Genes (Basel). 2023 Jan 15;14(1):226. doi: 10.3390/genes14010226.
8
Computational systems biology approaches for Parkinson's disease.计算系统生物学方法在帕金森病中的应用。
Cell Tissue Res. 2018 Jul;373(1):91-109. doi: 10.1007/s00441-017-2734-5. Epub 2017 Nov 29.
9
Analysis of blood-based gene expression in idiopathic Parkinson disease.特发性帕金森病血液基因表达分析
Neurology. 2017 Oct 17;89(16):1676-1683. doi: 10.1212/WNL.0000000000004516. Epub 2017 Sep 15.

本文引用的文献

9
Interplay of LRRK2 with chaperone-mediated autophagy.LRRK2 与伴侣蛋白介导的自噬相互作用。
Nat Neurosci. 2013 Apr;16(4):394-406. doi: 10.1038/nn.3350. Epub 2013 Mar 3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验