Oregon State University, United States.
USDA, ARS, NCAUR, United States.
Bioresour Technol. 2015;188:153-60. doi: 10.1016/j.biortech.2015.02.015. Epub 2015 Feb 20.
A combination of batch fermentations and genome scale flux balance analysis were used to identify and quantify the rate limiting reactions in the xylulose transport and utilization pathway. Xylulose phosphorylation by xylulokinase was identified as limiting in wild type Saccharomyces cerevisiae, but transport became limiting when xylulokinase was upregulated. Further experiments showed xylulose transport through the HXT family of non-specific glucose transporters. A genome scale flux balance model was developed which included an improved variable sugar uptake constraint controlled by HXT expression. Model predictions closely matched experimental xylulose utilization rates suggesting the combination of transport and xylulokinase constraints is sufficient to explain xylulose utilization limitation in S. cerevisiae.
采用分批发酵和基因组尺度通量平衡分析相结合的方法,确定并量化了木糖运输和利用途径中的限速反应。木糖激酶催化木糖磷酸化被鉴定为野生型酿酒酵母中的限速步骤,但当木糖激酶过表达时,运输成为限速步骤。进一步的实验表明,木糖通过非特异性葡萄糖转运蛋白家族 HXT 进行转运。建立了一个基因组尺度通量平衡模型,该模型包括一个由 HXT 表达控制的改进的可变糖摄取约束条件。模型预测与实验木糖利用速率非常吻合,这表明运输和木糖激酶的限制足以解释酿酒酵母中木糖的利用限制。