Wohrer Adrien, Machens Christian K
Group for Neural Theory, Laboratoire de Neurosciences Cognitives, INSERM U960, École Normale Supérieure, Paris, France.
Group for Neural Theory, Laboratoire de Neurosciences Cognitives, INSERM U960, École Normale Supérieure, Paris, France; Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal.
PLoS Comput Biol. 2015 Mar 20;11(3):e1004082. doi: 10.1371/journal.pcbi.1004082. eCollection 2015 Mar.
All of our perceptual experiences arise from the activity of neural populations. Here we study the formation of such percepts under the assumption that they emerge from a linear readout, i.e., a weighted sum of the neurons' firing rates. We show that this assumption constrains the trial-to-trial covariance structure of neural activities and animal behavior. The predicted covariance structure depends on the readout parameters, and in particular on the temporal integration window w and typical number of neurons K used in the formation of the percept. Using these predictions, we show how to infer the readout parameters from joint measurements of a subject's behavior and neural activities. We consider three such scenarios: (1) recordings from the complete neural population, (2) recordings of neuronal sub-ensembles whose size exceeds K, and (3) recordings of neuronal sub-ensembles that are smaller than K. Using theoretical arguments and artificially generated data, we show that the first two scenarios allow us to recover the typical spatial and temporal scales of the readout. In the third scenario, we show that the readout parameters can only be recovered by making additional assumptions about the structure of the full population activity. Our work provides the first thorough interpretation of (feed-forward) percept formation from a population of sensory neurons. We discuss applications to experimental recordings in classic sensory decision-making tasks, which will hopefully provide new insights into the nature of perceptual integration.
我们所有的感知体验都源于神经群体的活动。在此,我们在这样的假设下研究此类感知的形成,即它们源自线性读出,也就是神经元发放率的加权和。我们表明,这一假设限制了神经活动和动物行为在每次试验间的协方差结构。预测的协方差结构取决于读出参数,特别是取决于在感知形成中使用的时间积分窗口(w)和典型神经元数量(K)。利用这些预测,我们展示了如何从对受试者行为和神经活动的联合测量中推断读出参数。我们考虑三种这样的情况:(1)来自完整神经群体的记录,(2)大小超过(K)的神经元子集合的记录,以及(3)小于(K)的神经元子集合的记录。通过理论论证和人工生成的数据,我们表明前两种情况使我们能够恢复读出的典型空间和时间尺度。在第三种情况下,我们表明只有通过对全群体活动的结构做出额外假设,才能恢复读出参数。我们的工作首次对来自一群感觉神经元的(前馈)感知形成进行了全面解释。我们讨论了在经典感觉决策任务中对实验记录的应用,这有望为感知整合的本质提供新的见解。