Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States of America.
Department of Basic Neuroscience, University of Geneva, Geneva, Switzerland.
PLoS Comput Biol. 2018 Sep 24;14(9):e1006371. doi: 10.1371/journal.pcbi.1006371. eCollection 2018 Sep.
Studies of neuron-behaviour correlation and causal manipulation have long been used separately to understand the neural basis of perception. Yet these approaches sometimes lead to drastically conflicting conclusions about the functional role of brain areas. Theories that focus only on choice-related neuronal activity cannot reconcile those findings without additional experiments involving large-scale recordings to measure interneuronal correlations. By expanding current theories of neural coding and incorporating results from inactivation experiments, we demonstrate here that it is possible to infer decoding weights of different brain areas at a coarse scale without precise knowledge of the correlation structure. We apply this technique to neural data collected from two different cortical areas in macaque monkeys trained to perform a heading discrimination task. We identify two opposing decoding schemes, each consistent with data depending on the nature of correlated noise. Our theory makes specific testable predictions to distinguish these scenarios experimentally without requiring measurement of the underlying noise correlations.
长期以来,神经元行为相关性研究和因果操纵研究一直被分别用于理解感知的神经基础。然而,这些方法有时会导致关于大脑区域功能作用的结论大相径庭。仅仅关注与选择相关的神经元活动的理论,如果没有涉及大规模记录以测量神经元间相关性的额外实验,就无法调和这些发现。通过扩展当前的神经编码理论,并整合失活实验的结果,我们在这里证明,即使没有对相关性结构的精确了解,也可以在粗尺度上推断不同大脑区域的解码权重。我们将这项技术应用于从两只猕猴的两个不同皮质区域收集的神经数据,这些猕猴被训练执行头部辨别任务。我们确定了两种相反的解码方案,每种方案都取决于相关噪声的性质,与数据一致。我们的理论提出了具体的可测试预测,以在不要求测量潜在噪声相关性的情况下通过实验区分这些情况。