Suppr超能文献

机会性建筑物管道病原体的流行病学与生态学:嗜肺军团菌、鸟分枝杆菌和铜绿假单胞菌

Epidemiology and Ecology of Opportunistic Premise Plumbing Pathogens: Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa.

作者信息

Falkinham Joseph O, Hilborn Elizabeth D, Arduino Matthew J, Pruden Amy, Edwards Marc A

机构信息

Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA.

出版信息

Environ Health Perspect. 2015 Aug;123(8):749-58. doi: 10.1289/ehp.1408692. Epub 2015 Mar 20.

Abstract

BACKGROUND

Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa are opportunistic premise plumbing pathogens (OPPPs) that persist and grow in household plumbing, habitats they share with humans. Infections caused by these OPPPs involve individuals with preexisting risk factors and frequently require hospitalization.

OBJECTIVES

The objectives of this report are to alert professionals of the impact of OPPPs, the fact that 30% of the population may be exposed to OPPPs, and the need to develop means to reduce OPPP exposure. We herein present a review of the epidemiology and ecology of these three bacterial OPPPs, specifically to identify common and unique features.

METHODS

A Water Research Foundation-sponsored workshop gathered experts from across the United States to review the characteristics of OPPPs, identify problems, and develop a list of research priorities to address critical knowledge gaps with respect to increasing OPPP-associated disease.

DISCUSSION

OPPPs share the common characteristics of disinfectant resistance and growth in biofilms in water distribution systems or premise plumbing. Thus, they share a number of habitats with humans (e.g., showers) that can lead to exposure and infection. The frequency of OPPP-infected individuals is rising and will likely continue to rise as the number of at-risk individuals is increasing. Improved reporting of OPPP disease and increased understanding of the genetic, physiologic, and structural characteristics governing the persistence and growth of OPPPs in drinking water distribution systems and premise plumbing is needed.

CONCLUSIONS

Because broadly effective community-level engineering interventions for the control of OPPPs have yet to be identified, and because the number of at-risk individuals will continue to rise, it is likely that OPPP-related infections will continue to increase. However, it is possible that individuals can take measures (e.g., raise hot water heater temperatures and filter water) to reduce home exposures.

摘要

背景

嗜肺军团菌、鸟分枝杆菌和铜绿假单胞菌是机会性管道病原体(OPPPs),它们在家庭管道中持续存在并生长,这些管道也是它们与人类共有的栖息地。由这些OPPPs引起的感染涉及已有危险因素的个体,且常常需要住院治疗。

目的

本报告的目的是提醒专业人员注意OPPPs的影响、30%的人口可能接触到OPPPs这一事实,以及开发减少OPPPs暴露方法的必要性。我们在此对这三种细菌性OPPPs的流行病学和生态学进行综述,特别旨在识别其共同特征和独特特征。

方法

由水研究基金会赞助的一次研讨会召集了来自美国各地的专家,以审查OPPPs的特征、识别问题,并制定一份研究优先事项清单,以填补与增加OPPPs相关疾病有关的关键知识空白。

讨论

OPPPs具有抗消毒剂和在配水系统或建筑物管道中的生物膜中生长的共同特征。因此,它们与人类共享许多栖息地(如淋浴设施),这可能导致暴露和感染。OPPPs感染个体的频率正在上升,并且随着高危个体数量的增加可能会继续上升。需要改进OPPPs疾病的报告,并增进对饮用水分配系统和建筑物管道中OPPPs持续存在和生长的遗传、生理和结构特征的了解。

结论

由于尚未确定广泛有效的社区层面控制OPPPs的工程干预措施,并且由于高危个体数量将继续增加,OPPPs相关感染可能会继续增加。然而,个人有可能采取措施(如提高热水器温度和过滤水)以减少家庭暴露。

相似文献

2
Plumbing Pathogens: A Fixture in Hospitals and Homes.
Environ Health Perspect. 2015 Aug;123(8):A217. doi: 10.1289/ehp.123-A217.
4
Living with and Other Waterborne Pathogens.
Microorganisms. 2020 Dec 18;8(12):2026. doi: 10.3390/microorganisms8122026.
5
Methodological approaches for monitoring opportunistic pathogens in premise plumbing: A review.
Water Res. 2017 Jun 15;117:68-86. doi: 10.1016/j.watres.2017.03.046. Epub 2017 Mar 25.
6
One-year survey of opportunistic premise plumbing pathogens and free-living amoebae in the tap-water of one northern city of China.
J Environ Sci (China). 2019 Mar;77:20-31. doi: 10.1016/j.jes.2018.04.020. Epub 2018 Apr 26.
8
Common features of opportunistic premise plumbing pathogens.
Int J Environ Res Public Health. 2015 Apr 24;12(5):4533-45. doi: 10.3390/ijerph120504533.
9
Molecular detection of opportunistic premise plumbing pathogens in rural Louisiana's drinking water distribution system.
Environ Res. 2020 Feb;181:108847. doi: 10.1016/j.envres.2019.108847. Epub 2019 Nov 15.
10
Seasonal Assessment of Opportunistic Premise Plumbing Pathogens in Roof-Harvested Rainwater Tanks.
Environ Sci Technol. 2017 Feb 7;51(3):1742-1753. doi: 10.1021/acs.est.6b04814. Epub 2017 Jan 26.

引用本文的文献

2
Analysis of changes in respiratory tract infections in a tertiary grade A hospital in Zhangjiakou area from 2018 to 2024.
Medicine (Baltimore). 2025 Jul 18;104(29):e43435. doi: 10.1097/MD.0000000000043435.
3
Moving Beyond the Silos of Opportunistic Pathogen and Disinfection Byproduct Research to Improve Drinking Water System Management.
Environ Sci Technol. 2025 May 13;59(18):8900-8921. doi: 10.1021/acs.est.4c12586. Epub 2025 May 2.
4
The State-of-the-Art of Infections and the Causal Link with Health Settings: A Systematic Review.
Healthcare (Basel). 2024 Sep 6;12(17):1788. doi: 10.3390/healthcare12171788.
5
Water Quality Trade-offs for Risk Management Interventions in a Green Building.
Environ Sci (Camb). 2024 Apr 1;10(4):767-786. doi: 10.1039/d3ew00650f. Epub 2023 Dec 20.
6
Quantitative Microbial Risk Assessment of Antibiotic-Resistant , , and Mycobacteria in Nonpotable Wastewater Reuse Applications.
Environ Sci Technol. 2024 Jul 23;58(29):12888-12898. doi: 10.1021/acs.est.4c01690. Epub 2024 Jul 14.
7
A Delicate Balance: Water Disinfection and By-Product Immunotoxicity.
Environ Health Perspect. 2024 Apr;132(4):44004. doi: 10.1289/EHP14529. Epub 2024 Apr 30.
8
Ecology of biofilms: The link between transcriptional activity and the biphasic cycle.
Biofilm. 2024 Mar 30;7:100196. doi: 10.1016/j.bioflm.2024.100196. eCollection 2024 Jun.
9
Tap water microbiome shifts in secondary water supply for high-rise buildings.
Environ Sci Ecotechnol. 2024 Mar 16;20:100413. doi: 10.1016/j.ese.2024.100413. eCollection 2024 Jul.
10
Surveillance of Waterborne Disease Outbreaks Associated with Drinking Water - United States, 2015-2020.
MMWR Surveill Summ. 2024 Mar 14;73(1):1-23. doi: 10.15585/mmwr.ss7301a1.

本文引用的文献

1
Anticipating challenges with in-building disinfection for control of opportunistic pathogens.
Water Environ Res. 2014 Jun;86(6):540-9. doi: 10.2175/106143014x13975035524989.
3
Pseudomonas biofilms: possibilities of their control.
FEMS Microbiol Ecol. 2014 Jul;89(1):1-14. doi: 10.1111/1574-6941.12344. Epub 2014 May 8.
4
Widespread molecular detection of Legionella pneumophila Serogroup 1 in cold water taps across the United States.
Environ Sci Technol. 2014 Mar 18;48(6):3145-52. doi: 10.1021/es4055115. Epub 2014 Mar 6.
5
Effect of chlorine exposure on the survival and antibiotic gene expression of multidrug resistant Acinetobacter baumannii in water.
Int J Environ Res Public Health. 2014 Feb 7;11(2):1844-54. doi: 10.3390/ijerph110201844.
7
Recreational water-associated disease outbreaks--United States, 2009-2010.
MMWR Morb Mortal Wkly Rep. 2014 Jan 10;63(1):6-10.
8
Characterization and resuscitation of 'non-culturable' cells of Legionella pneumophila.
BMC Microbiol. 2014 Jan 2;14:3. doi: 10.1186/1471-2180-14-3.
9
Molecular analysis of point-of-use municipal drinking water microbiology.
Water Res. 2014 Feb 1;49:225-35. doi: 10.1016/j.watres.2013.11.027. Epub 2013 Nov 27.
10
Pulmonary nontuberculous mycobacterial disease, Ontario, Canada, 1998-2010.
Emerg Infect Dis. 2013 Nov;19(11):1889-91. doi: 10.3201/eid1911.130737.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验