Suppr超能文献

从关联到预测:植物复杂性状解析与选择的统计方法

From association to prediction: statistical methods for the dissection and selection of complex traits in plants.

作者信息

Lipka Alexander E, Kandianis Catherine B, Hudson Matthew E, Yu Jianming, Drnevich Jenny, Bradbury Peter J, Gore Michael A

机构信息

University of Illinois, Department of Crop Sciences, Urbana, IL 61801, USA.

Michigan State University, Department of Biochemistry and Molecular Biology, East Lansing, MI 48824, USA; Cornell University, Plant Breeding and Genetics Section, School of Integrative Plant Science, Ithaca, NY 14853, USA.

出版信息

Curr Opin Plant Biol. 2015 Apr;24:110-8. doi: 10.1016/j.pbi.2015.02.010. Epub 2015 Mar 17.

Abstract

Quantification of genotype-to-phenotype associations is central to many scientific investigations, yet the ability to obtain consistent results may be thwarted without appropriate statistical analyses. Models for association can consider confounding effects in the materials and complex genetic interactions. Selecting optimal models enables accurate evaluation of associations between marker loci and numerous phenotypes including gene expression. Significant improvements in QTL discovery via association mapping and acceleration of breeding cycles through genomic selection are two successful applications of models using genome-wide markers. Given recent advances in genotyping and phenotyping technologies, further refinement of these approaches is needed to model genetic architecture more accurately and run analyses in a computationally efficient manner, all while accounting for false positives and maximizing statistical power.

摘要

基因型与表型关联的量化是许多科学研究的核心,但如果没有适当的统计分析,获得一致结果的能力可能会受到阻碍。关联模型可以考虑材料中的混杂效应和复杂的基因相互作用。选择最佳模型能够准确评估标记位点与包括基因表达在内的众多表型之间的关联。通过关联图谱发现数量性状基因座(QTL)的显著改进以及通过基因组选择加速育种周期是使用全基因组标记的模型的两个成功应用。鉴于基因分型和表型分析技术的最新进展,需要进一步完善这些方法,以便更准确地模拟遗传结构,并以计算高效的方式进行分析,同时还要考虑假阳性并最大化统计功效。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验