Suppr超能文献

菜豆多样性群体中氟草嗪耐受性的定位导致发现一个控制多个抗逆基因的主要基因组区域。

Mapping of flumioxazin tolerance in a snap bean diversity panel leads to the discovery of a master genomic region controlling multiple stress resistance genes.

作者信息

Saballos Ana I, Brooks Matthew D, Tranel Patrick J, Williams Martin M

机构信息

Global Change and Photosynthesis Research Unit, United States Department of Agriculture-Agricultural Research Service, Urbana, IL, United States.

Department of Crop Sciences, University of Illinois, Urbana, IL, United States.

出版信息

Front Plant Sci. 2024 Jul 2;15:1404889. doi: 10.3389/fpls.2024.1404889. eCollection 2024.

Abstract

INTRODUCTION

Effective weed management tools are crucial for maintaining the profitable production of snap bean ( L.). Preemergence herbicides help the crop to gain a size advantage over the weeds, but the few preemergence herbicides registered in snap bean have poor waterhemp (Amaranthus tuberculatus) control, a major pest in snap bean production. Waterhemp and other difficult-to-control weeds can be managed by flumioxazin, an herbicide that inhibits protoporphyrinogen oxidase (PPO). However, there is limited knowledge about crop tolerance to this herbicide. We aimed to quantify the degree of snap bean tolerance to flumioxazin and explore the underlying mechanisms.

METHODS

We investigated the genetic basis of herbicide tolerance using genome-wide association mapping approach utilizing field-collected data from a snap bean diversity panel, combined with gene expression data of cultivars with contrasting response. The response to a preemergence application of flumioxazin was measured by assessing plant population density and shoot biomass variables.

RESULTS

Snap bean tolerance to flumioxazin is associated with a single genomic location in chromosome 02. Tolerance is influenced by several factors, including those that are indirectly affected by seed size/weight and those that directly impact the herbicide's metabolism and protect the cell from reactive oxygen species-induced damage. Transcriptional profiling and co-expression network analysis identified biological pathways likely involved in flumioxazin tolerance, including oxidoreductase processes and programmed cell death. Transcriptional regulation of genes involved in those processes is possibly orchestrated by a transcription factor located in the region identified in the GWAS analysis. Several entries belonging to the Romano class, including Bush Romano 350, Roma II, and Romano Purpiat presented high levels of tolerance in this study. The alleles identified in the diversity panel that condition snap bean tolerance to flumioxazin shed light on a novel mechanism of herbicide tolerance and can be used in crop improvement.

摘要

引言

有效的杂草管理工具对于维持菜豆(Phaseolus vulgaris L.)的盈利性生产至关重要。苗前除草剂有助于作物在与杂草的竞争中获得大小优势,但菜豆中登记的少数苗前除草剂对水麻(Amaranthus tuberculatus)的防除效果不佳,而水麻是菜豆生产中的主要害虫。水麻和其他难以防除的杂草可用氟米草嗪进行管理,氟米草嗪是一种抑制原卟啉原氧化酶(PPO)的除草剂。然而,关于作物对这种除草剂的耐受性的了解有限。我们旨在量化菜豆对氟米草嗪的耐受程度,并探索其潜在机制。

方法

我们利用全基因组关联图谱方法,结合从菜豆多样性群体中田间收集的数据以及具有不同反应的品种的基因表达数据,研究了除草剂耐受性的遗传基础。通过评估植株种群密度和地上部生物量变量来测定对苗前施用氟米草嗪的反应。

结果

菜豆对氟米草嗪的耐受性与2号染色体上的一个基因组位点相关。耐受性受多种因素影响,包括那些受种子大小/重量间接影响的因素以及那些直接影响除草剂代谢并保护细胞免受活性氧诱导损伤的因素。转录谱分析和共表达网络分析确定了可能参与氟米草嗪耐受性的生物学途径,包括氧化还原酶过程和程序性细胞死亡。参与这些过程的基因的转录调控可能由位于全基因组关联研究分析中确定区域的一个转录因子协调。在本研究中,包括布什罗马诺350、罗马二号和罗马诺普尔皮亚在内的几个罗马诺品种表现出较高的耐受性。在多样性群体中鉴定出的决定菜豆对氟米草嗪耐受性的等位基因揭示了一种新的除草剂耐受机制,可用于作物改良。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fcc/11250381/3153cdb8f5ba/fpls-15-1404889-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验