Suppr超能文献

增加丙酮酸脱氢酶通量作为糖尿病心肌病的一种治疗方法:一项13C超极化磁共振与超声心动图联合研究

Increasing Pyruvate Dehydrogenase Flux as a Treatment for Diabetic Cardiomyopathy: A Combined 13C Hyperpolarized Magnetic Resonance and Echocardiography Study.

作者信息

Le Page Lydia M, Rider Oliver J, Lewis Andrew J, Ball Vicky, Clarke Kieran, Johansson Edvin, Carr Carolyn A, Heather Lisa C, Tyler Damian J

机构信息

Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, U.K.

Division of Cardiovascular Medicine, University of Oxford, Oxford, U.K.

出版信息

Diabetes. 2015 Aug;64(8):2735-43. doi: 10.2337/db14-1560. Epub 2015 Mar 20.

Abstract

Although diabetic cardiomyopathy is widely recognized, there are no specific treatments available. Altered myocardial substrate selection has emerged as a candidate mechanism behind the development of cardiac dysfunction in diabetes. As pyruvate dehydrogenase (PDH) activity appears central to the balance of substrate use, we aimed to investigate the relationship between PDH flux and myocardial function in a rodent model of type 2 diabetes and to explore whether or not increasing PDH flux, with dichloroacetate, would restore the balance of substrate use and improve cardiac function. All animals underwent in vivo hyperpolarized [1-(13)C]pyruvate magnetic resonance spectroscopy and echocardiography to assess cardiac PDH flux and function, respectively. Diabetic animals showed significantly higher blood glucose levels (10.8 ± 0.7 vs. 8.4 ± 0.5 mmol/L), lower PDH flux (0.005 ± 0.001 vs. 0.017 ± 0.002 s(-1)), and significantly impaired diastolic function (transmitral early diastolic peak velocity/early diastolic myocardial velocity ratio [E/E'] 12.2 ± 0.8 vs. 20 ± 2), which are in keeping with early diabetic cardiomyopathy. Twenty-eight days of treatment with dichloroacetate restored PDH flux to normal levels (0.018 ± 0.002 s(-1)), reversed diastolic dysfunction (E/E' 14 ± 1), and normalized blood glucose levels (7.5 ± 0.7 mmol/L). The treatment of diabetes with dichloroacetate therefore restored the balance of myocardial substrate selection, reversed diastolic dysfunction, and normalized blood glucose levels. This suggests that PDH modulation could be a novel therapy for the treatment and/or prevention of diabetic cardiomyopathy.

摘要

尽管糖尿病性心肌病已被广泛认识,但目前尚无特效治疗方法。心肌底物选择的改变已成为糖尿病心脏功能障碍发生背后的一种潜在机制。由于丙酮酸脱氢酶(PDH)活性似乎是底物利用平衡的核心,我们旨在研究2型糖尿病啮齿动物模型中PDH通量与心肌功能之间的关系,并探讨用二氯乙酸增加PDH通量是否能恢复底物利用平衡并改善心脏功能。所有动物均接受体内超极化[1-(13)C]丙酮酸磁共振波谱和超声心动图检查,分别评估心脏PDH通量和功能。糖尿病动物的血糖水平显著更高(10.8±0.7 vs. 8.4±0.5 mmol/L),PDH通量更低(0.005±0.001 vs. 0.017±0.002 s-1),舒张功能明显受损(二尖瓣舒张早期峰值速度/舒张早期心肌速度比值[E/E'] 12.2±0.8 vs. 20±2),这些均与早期糖尿病性心肌病相符。用二氯乙酸治疗28天可使PDH通量恢复至正常水平(0.018±0.002 s-1),逆转舒张功能障碍(E/E' 14±1),并使血糖水平正常化(7.5±0.7 mmol/L)。因此,用二氯乙酸治疗糖尿病可恢复心肌底物选择平衡,逆转舒张功能障碍,并使血糖水平正常化。这表明PDH调节可能是治疗和/或预防糖尿病性心肌病的一种新疗法。

相似文献

3
Noninvasive In Vivo Assessment of Cardiac Metabolism in the Healthy and Diabetic Human Heart Using Hyperpolarized C MRI.
Circ Res. 2020 Mar 13;126(6):725-736. doi: 10.1161/CIRCRESAHA.119.316260. Epub 2020 Feb 5.
5
Pyruvate dehydrogenase influences postischemic heart function.
Circulation. 1995 Apr 1;91(7):2071-9. doi: 10.1161/01.cir.91.7.2071.
6
Liraglutide alleviates experimental diabetic cardiomyopathy in a PDH-dependent manner.
J Endocrinol. 2024 Jul 8;262(2). doi: 10.1530/JOE-24-0032. Print 2024 Aug 1.
9
In vivo assessment of pyruvate dehydrogenase flux in the heart using hyperpolarized carbon-13 magnetic resonance.
Proc Natl Acad Sci U S A. 2008 Aug 19;105(33):12051-6. doi: 10.1073/pnas.0805953105. Epub 2008 Aug 8.
10
Validation of the in vivo assessment of pyruvate dehydrogenase activity using hyperpolarised 13C MRS.
NMR Biomed. 2011 Feb;24(2):201-208. doi: 10.1002/nbm.1573. Epub 2010 Aug 26.

引用本文的文献

1
Cardiac substrate metabolism in type 2 diabetes.
Biochem J. 2025 May 21;482(10):499-518. doi: 10.1042/BCJ20240189.
2
Myocardial pyruvate dehydrogenase kinase 4 drives sex-specific cardiac responses to endotoxemia.
JCI Insight. 2025 Jul 8;10(13). doi: 10.1172/jci.insight.191649.
3
Obesity and heart failure: exploring the cardiometabolic axis.
Cardiovasc Res. 2025 Jul 31;121(8):1173-1186. doi: 10.1093/cvr/cvaf090.
4
Cardiac energy substrate utilization in heart failure with preserved ejection fraction: reconciling conflicting evidence on fatty acid and glucose metabolism.
Am J Physiol Heart Circ Physiol. 2025 Jun 1;328(6):H1267-H1295. doi: 10.1152/ajpheart.00121.2025. Epub 2025 Apr 18.
5
Reciprocal rescue of Wolfram syndrome by two causative genes.
EMBO Rep. 2025 May;26(9):2459-2482. doi: 10.1038/s44319-025-00436-2. Epub 2025 Apr 3.
7
Advances in myocardial energy metabolism: metabolic remodelling in heart failure and beyond.
Cardiovasc Res. 2024 Dec 14;120(16):1996-2016. doi: 10.1093/cvr/cvae231.
8
Post-translational modifications of pyruvate dehydrogenase complex in cardiovascular disease.
iScience. 2024 Jul 31;27(9):110633. doi: 10.1016/j.isci.2024.110633. eCollection 2024 Sep 20.
9
Mitochondrial energy metabolism in diabetic cardiomyopathy: Physiological adaption, pathogenesis, and therapeutic targets.
Chin Med J (Engl). 2024 Apr 20;137(8):936-948. doi: 10.1097/CM9.0000000000003075. Epub 2024 Mar 25.
10
Post-translational modifications in diabetic cardiomyopathy.
J Cell Mol Med. 2024 Apr;28(7):e18158. doi: 10.1111/jcmm.18158.

本文引用的文献

1
Clinical implications of cardiac hyperpolarized magnetic resonance imaging.
J Cardiovasc Magn Reson. 2013 Oct 8;15(1):93. doi: 10.1186/1532-429X-15-93.
2
Cardiac metabolism in a new rat model of type 2 diabetes using high-fat diet with low dose streptozotocin.
Cardiovasc Diabetol. 2013 Sep 24;12:136. doi: 10.1186/1475-2840-12-136.
4
Phenylbutyrate therapy for pyruvate dehydrogenase complex deficiency and lactic acidosis.
Sci Transl Med. 2013 Mar 6;5(175):175ra31. doi: 10.1126/scitranslmed.3004986.
5
Metabolic dysfunction in diabetic cardiomyopathy.
Heart Fail Rev. 2014 Jan;19(1):35-48. doi: 10.1007/s10741-013-9377-8.
6
ANG II causes insulin resistance and induces cardiac metabolic switch and inefficiency: a critical role of PDK4.
Am J Physiol Heart Circ Physiol. 2013 Apr 15;304(8):H1103-13. doi: 10.1152/ajpheart.00636.2012. Epub 2013 Feb 8.
7
Myocardial substrate metabolism in obesity.
Int J Obes (Lond). 2013 Jul;37(7):972-9. doi: 10.1038/ijo.2012.170. Epub 2012 Oct 16.
8
Diabetic cardiomyopathy: bench to bedside.
Heart Fail Clin. 2012 Oct;8(4):619-31. doi: 10.1016/j.hfc.2012.06.007. Epub 2012 Aug 9.
9
Stimulation of glucose oxidation protects against acute myocardial infarction and reperfusion injury.
Cardiovasc Res. 2012 May 1;94(2):359-69. doi: 10.1093/cvr/cvs129. Epub 2012 Mar 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验