Suppr超能文献

囊性纤维化呼吸道环境中的宿主-病原体相互作用

Host-pathogen interplay in the respiratory environment of cystic fibrosis.

作者信息

Yonker Lael M, Cigana Cristina, Hurley Bryan P, Bragonzi Alessandra

机构信息

Mucosal Immunology & Biology Research Center, Pediatrics, Harvard Medical School, Massachusetts General Hospital for Children , Charlestown, MA, U.S.A.

Infections and Cystic Fibrosis Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milano, Italy.

出版信息

J Cyst Fibros. 2015 Jul;14(4):431-439. doi: 10.1016/j.jcf.2015.02.008. Epub 2015 Mar 19.

Abstract

Significant advances have been made in the understanding of disease progression in cystic fibrosis (CF), revealing a complex interplay between host and pathogenic organisms. The diverse CF microbiota within the airway activates an aberrant immune response that is ineffective in clearing infection. An appreciation of how the CF host immune system interacts with these organisms is crucial to understanding the pathogenesis of CF pulmonary disease. Here we discuss the microbial complexity present in the lungs of individuals with CF, review emerging concepts of innate and adaptive immune responses to pathogens that chronically inhabit the CF lung, and discuss therapies that target the aberrant inflammatory response that characterizes CF. A greater understanding of the underlying mechanisms will shed light on pathogenesis and guide more targeted therapies in the future that serve to reduce infection, minimize lung pathology, and improve the quality of life for patients with CF.

摘要

在理解囊性纤维化(CF)疾病进展方面已取得重大进展,揭示了宿主与致病生物体之间复杂的相互作用。气道内多样的CF微生物群激活了异常的免疫反应,这种反应在清除感染方面无效。了解CF宿主免疫系统如何与这些生物体相互作用对于理解CF肺部疾病的发病机制至关重要。在这里,我们讨论CF患者肺部存在的微生物复杂性,回顾对长期存在于CF肺部的病原体的先天性和适应性免疫反应的新观念,并讨论针对CF特有的异常炎症反应的治疗方法。对潜在机制的更深入理解将有助于阐明发病机制,并在未来指导更有针对性的治疗,以减少感染、将肺部病理变化降至最低,并改善CF患者的生活质量。

相似文献

1
Host-pathogen interplay in the respiratory environment of cystic fibrosis.
J Cyst Fibros. 2015 Jul;14(4):431-439. doi: 10.1016/j.jcf.2015.02.008. Epub 2015 Mar 19.
2
Innate immunity in cystic fibrosis lung disease.
J Cyst Fibros. 2012 Sep;11(5):363-82. doi: 10.1016/j.jcf.2012.07.003. Epub 2012 Aug 20.
3
Cystic fibrosis lung environment and Pseudomonas aeruginosa infection.
BMC Pulm Med. 2016 Dec 5;16(1):174. doi: 10.1186/s12890-016-0339-5.
4
Cystic fibrosis: a polymicrobial infectious disease.
Future Microbiol. 2006 Jun;1(1):53-61. doi: 10.2217/17460913.1.1.53.
5
Cystic fibrosis lung microbiome: opportunities to reconsider management of airway infection.
Pediatr Pulmonol. 2015 Oct;50 Suppl 40:S31-8. doi: 10.1002/ppul.23243.
6
Toll-like receptors in the host defense against Pseudomonas aeruginosa respiratory infection and cystic fibrosis.
J Leukoc Biol. 2012 Nov;92(5):977-85. doi: 10.1189/jlb.0811410. Epub 2012 Aug 14.
7
Interplay between host-microbe and microbe-microbe interactions in cystic fibrosis.
J Cyst Fibros. 2020 Mar;19 Suppl 1(Suppl 1):S47-S53. doi: 10.1016/j.jcf.2019.10.015. Epub 2019 Nov 2.
8
Post-operative infections in cystic fibrosis and non-cystic fibrosis patients after lung transplantation.
J Heart Lung Transplant. 2007 Sep;26(9):890-7. doi: 10.1016/j.healun.2007.07.002.
9
Immune responses in cystic fibrosis: are they intrinsically defective?
Am J Respir Cell Mol Biol. 2012 Jun;46(6):715-22. doi: 10.1165/rcmb.2011-0399RT. Epub 2012 Mar 8.
10
Innate and Adaptive Immunity in Cystic Fibrosis.
Clin Chest Med. 2016 Mar;37(1):17-29. doi: 10.1016/j.ccm.2015.11.010. Epub 2015 Dec 28.

引用本文的文献

1
Immune system dynamics in response to Pseudomonas aeruginosa biofilms.
NPJ Biofilms Microbiomes. 2025 Jun 12;11(1):104. doi: 10.1038/s41522-025-00738-2.
2
Low Th17 cells in patients with cystic fibrosis and allergic broncho-pulmonary aspergillosis.
Pediatr Allergy Immunol. 2025 Apr;36(4):e70090. doi: 10.1111/pai.70090.
3
aggregates elicit neutrophil swarming.
iScience. 2025 Jan 11;28(2):111805. doi: 10.1016/j.isci.2025.111805. eCollection 2025 Feb 21.
4
Microbiosis in lung allotransplantation and xenotransplantation: State of the art and future perspective.
Health Care Sci. 2022 Sep 13;1(2):119-128. doi: 10.1002/hcs2.15. eCollection 2022 Oct.
8
Antibiotics Drive Expansion of Rare Pathogens in a Chronic Infection Microbiome Model.
mSphere. 2022 Oct 26;7(5):e0031822. doi: 10.1128/msphere.00318-22. Epub 2022 Aug 16.
9
10
Virulence Mechanisms of : Current Knowledge and Implications for Vaccine Design.
Front Microbiol. 2022 Mar 3;13:842017. doi: 10.3389/fmicb.2022.842017. eCollection 2022.

本文引用的文献

3
Does NETosis Contribute to the Bacterial Pathoadaptation in Cystic Fibrosis?
Front Immunol. 2014 Aug 11;5:378. doi: 10.3389/fimmu.2014.00378. eCollection 2014.
4
Directly sampling the lung of a young child with cystic fibrosis reveals diverse microbiota.
Ann Am Thorac Soc. 2014 Sep;11(7):1049-55. doi: 10.1513/AnnalsATS.201311-383OC.
5
Shifting paradigms of nontuberculous mycobacteria in cystic fibrosis.
Respir Res. 2014 Apr 11;15(1):41. doi: 10.1186/1465-9921-15-41.
8
Current concepts of immune dysregulation in cystic fibrosis.
Int J Biochem Cell Biol. 2014 Jul;52:108-12. doi: 10.1016/j.biocel.2014.01.017. Epub 2014 Feb 2.
10
The cystic fibrosis lung microbiome.
Ann Am Thorac Soc. 2014 Jan;11 Suppl 1:S61-5. doi: 10.1513/AnnalsATS.201306-159MG.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验