Kowalik Katarzyna Maria, Shimada Yukiko, Flury Valentin, Stadler Michael Beda, Batki Julia, Bühler Marc
Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland.
University of Basel, Petersplatz 10, 4003 Basel, Switzerland.
Nature. 2015 Apr 9;520(7546):248-252. doi: 10.1038/nature14337. Epub 2015 Mar 25.
RNA interference (RNAi) refers to the ability of exogenously introduced double-stranded RNA to silence expression of homologous sequences. Silencing is initiated when the enzyme Dicer processes the double-stranded RNA into small interfering RNAs (siRNAs). Small RNA molecules are incorporated into Argonaute-protein-containing effector complexes, which they guide to complementary targets to mediate different types of gene silencing, specifically post-transcriptional gene silencing and chromatin-dependent gene silencing. Although endogenous small RNAs have crucial roles in chromatin-mediated processes across kingdoms, efforts to initiate chromatin modifications in trans by using siRNAs have been inherently difficult to achieve in all eukaryotic cells. Using fission yeast, here we show that RNAi-directed heterochromatin formation is negatively controlled by the highly conserved RNA polymerase-associated factor 1 complex (Paf1C). Temporary expression of a synthetic hairpin RNA in Paf1C mutants triggers stable heterochromatin formation at homologous loci, effectively silencing genes in trans. This repressed state is propagated across generations by the continual production of secondary siRNAs, independently of the synthetic hairpin RNA. Our data support a model in which Paf1C prevents targeting of nascent transcripts by the siRNA-containing RNA-induced transcriptional silencing complex and thereby epigenetic gene silencing, by promoting efficient transcription termination and rapid release of the RNA from the site of transcription. We show that although compromised transcription termination is sufficient to initiate the formation of bi-stable heterochromatin by trans-acting siRNAs, impairment of both transcription termination and nascent transcript release is imperative to confer stability to the repressed state. Our work uncovers a novel mechanism for small-RNA-mediated epigenome regulation and highlights fundamental roles for Paf1C and the RNAi machinery in building epigenetic memory.
RNA干扰(RNAi)是指外源性导入的双链RNA使同源序列表达沉默的能力。当酶Dicer将双链RNA加工成小干扰RNA(siRNA)时,沉默过程即被启动。小RNA分子被整合到含有AGO蛋白的效应复合物中,引导该复合物靶向互补靶标,从而介导不同类型的基因沉默,特别是转录后基因沉默和染色质依赖性基因沉默。尽管内源性小RNA在跨生物界的染色质介导过程中发挥着关键作用,但在所有真核细胞中,利用siRNA在反式作用中启动染色质修饰一直都颇具难度。在此,我们利用裂殖酵母表明,RNAi导向的异染色质形成受到高度保守的RNA聚合酶相关因子1复合物(Paf1C)的负调控。在Paf1C突变体中瞬时表达合成发夹RNA会触发同源位点处稳定的异染色质形成,从而有效地使反式作用中的基因沉默。这种抑制状态通过次级siRNA的持续产生在代与代之间传递,而与合成发夹RNA无关。我们的数据支持这样一种模型,即Paf1C通过促进有效的转录终止以及RNA从转录位点的快速释放,防止含siRNA的RNA诱导转录沉默复合物靶向新生转录本,进而防止表观遗传基因沉默。我们表明,虽然转录终止受损足以通过反式作用的siRNA启动双稳态异染色质的形成,但转录终止和新生转录本释放两者的受损对于赋予抑制状态稳定性而言是必不可少的。我们的工作揭示了小RNA介导的表观基因组调控的一种新机制,并突出了Paf1C和RNAi机制在构建表观遗传记忆中的重要作用。