Suppr超能文献

坦克履带样红细胞的倾斜角度:对剪切速率和悬浮介质的依赖性。

Angle of inclination of tank-treading red cells: dependence on shear rate and suspending medium.

作者信息

Fischer Thomas M, Korzeniewski Rafal

机构信息

Department of Physiology, Rheinisch Westfälische Technische Hochschule Aachen University, Aachen, Germany.

Department of Physiology, Rheinisch Westfälische Technische Hochschule Aachen University, Aachen, Germany.

出版信息

Biophys J. 2015 Mar 24;108(6):1352-1360. doi: 10.1016/j.bpj.2015.01.028.

Abstract

Red cells suspended in solutions much more viscous than blood plasma assume an almost steady-state orientation when sheared above a threshold value of shear rate. This orientation is a consequence of the motion of the membrane around the red cell called tank-treading. Observed along the undisturbed vorticity of the shear flow, tank-treading red cells appear as slender bodies. Their orientation can be quantified as an angle of inclination (θ) of the major axis with respect to the undisturbed flow direction. We measured θ using solution viscosities (η0) and shear rates (γ˙) covering one and three orders of magnitude, respectively. At the lower values of η0, θ was almost independent of γ˙. At the higher values of η0, θ displayed a maximum at intermediate shear rates. The respective maximal values of θ increased by ∼10° from 10.7 to 104 mPas. After accounting for the absent membrane viscosity in models by using an increased cytoplasmic viscosity, their predictions of θ agree qualitatively with our data. Comparison of the observed variation of θ at constant γ˙ with model results suggests a change in the reference configuration of the shear stiffness of the membrane.

摘要

悬浮于比血浆粘性大得多的溶液中的红细胞,当剪切速率高于阈值时被剪切,会呈现出几乎稳定的取向。这种取向是红细胞周围膜的运动(称为“坦克履带式运动”)的结果。沿剪切流未受干扰的涡度观察,进行“坦克履带式运动”的红细胞呈现为细长体。它们的取向可以量化为长轴相对于未受干扰流动方向的倾斜角(θ)。我们分别使用涵盖一个和三个数量级的溶液粘度(η0)和剪切速率(γ˙)来测量θ。在较低的η0值时,θ几乎与γ˙无关。在较高的η0值时,θ在中等剪切速率下出现最大值。θ的各自最大值从10.7到104毫帕秒增加了约10°。通过使用增加的细胞质粘度来考虑模型中不存在的膜粘度后,它们对θ的预测在定性上与我们的数据一致。在恒定γ˙下观察到的θ变化与模型结果的比较表明,膜剪切刚度的参考构型发生了变化。

相似文献

4
Tank-treading and tumbling frequencies of capsules and red blood cells.胶囊和红细胞的坦克履带式运动及翻滚频率。
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Apr;83(4 Pt 2):046305. doi: 10.1103/PhysRevE.83.046305. Epub 2011 Apr 7.
8
Swinging and synchronized rotations of red blood cells in simple shear flow.红细胞在简单剪切流中的摆动和同步旋转。
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Aug;80(2 Pt 1):021902. doi: 10.1103/PhysRevE.80.021902. Epub 2009 Aug 4.
9
Dynamic modes of red blood cells in oscillatory shear flow.振荡剪切流中红细胞的动态模式。
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jun;81(6 Pt 1):061920. doi: 10.1103/PhysRevE.81.061920. Epub 2010 Jun 22.
10
Oscillatory tank-treading motion of erythrocytes in shear flows.红细胞在剪切流中的振荡坦克履带式运动。
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jul;84(1 Pt 1):011913. doi: 10.1103/PhysRevE.84.011913. Epub 2011 Jul 18.

引用本文的文献

3
Energy Dissipation in the Human Red Cell Membrane.人红细胞膜的能量耗散。
Biomolecules. 2023 Jan 9;13(1):130. doi: 10.3390/biom13010130.
9

本文引用的文献

3
Tension of red blood cell membrane in simple shear flow.简单剪切流中红细胞膜的张力
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Nov;86(5 Pt 2):056321. doi: 10.1103/PhysRevE.86.056321. Epub 2012 Nov 29.
7
Oscillatory tank-treading motion of erythrocytes in shear flows.红细胞在剪切流中的振荡坦克履带式运动。
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jul;84(1 Pt 1):011913. doi: 10.1103/PhysRevE.84.011913. Epub 2011 Jul 18.
9
Swinging and synchronized rotations of red blood cells in simple shear flow.红细胞在简单剪切流中的摆动和同步旋转。
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Aug;80(2 Pt 1):021902. doi: 10.1103/PhysRevE.80.021902. Epub 2009 Aug 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验