Suppr超能文献

用于糖尿病视网膜病变诊断的视网膜图像中血管的自动检测。

Automatic detection of blood vessels in retinal images for diabetic retinopathy diagnosis.

作者信息

Raja D Siva Sundhara, Vasuki S

机构信息

Department of ECE, SACS MAVMM Engineering College, Madurai, Tamil Nadu 625 301, India.

Department of ECE, Velammal College of Engineering and Technology, Madurai, Tamil Nadu 625 009, India.

出版信息

Comput Math Methods Med. 2015;2015:419279. doi: 10.1155/2015/419279. Epub 2015 Feb 24.

Abstract

Diabetic retinopathy (DR) is a leading cause of vision loss in diabetic patients. DR is mainly caused due to the damage of retinal blood vessels in the diabetic patients. It is essential to detect and segment the retinal blood vessels for DR detection and diagnosis, which prevents earlier vision loss in diabetic patients. The computer aided automatic detection and segmentation of blood vessels through the elimination of optic disc (OD) region in retina are proposed in this paper. The OD region is segmented using anisotropic diffusion filter and subsequentially the retinal blood vessels are detected using mathematical binary morphological operations. The proposed methodology is tested on two different publicly available datasets and achieved 93.99% sensitivity, 98.37% specificity, 98.08% accuracy in DRIVE dataset and 93.6% sensitivity, 98.96% specificity, and 95.94% accuracy in STARE dataset, respectively.

摘要

糖尿病视网膜病变(DR)是糖尿病患者视力丧失的主要原因。DR主要是由于糖尿病患者视网膜血管受损所致。检测和分割视网膜血管对于DR的检测和诊断至关重要,这可以预防糖尿病患者早期视力丧失。本文提出了通过消除视网膜中的视盘(OD)区域来对血管进行计算机辅助自动检测和分割的方法。使用各向异性扩散滤波器对视盘区域进行分割,随后使用数学形态学二元运算检测视网膜血管。所提出的方法在两个不同的公开可用数据集上进行了测试,在DRIVE数据集中分别达到了93.99%的灵敏度、98.37%的特异性、98.08%的准确率,在STARE数据集中分别达到了93.6%的灵敏度、98.96%的特异性和95.94%的准确率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f4f/4355346/7e6af81a89cf/CMMM2015-419279.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验