Suppr超能文献

大肠杆菌中通过异源电子传递链和微生物电化学电池中电极相互作用的甘油不平衡发酵。

Unbalanced fermentation of glycerol in Escherichia coli via heterologous production of an electron transport chain and electrode interaction in microbial electrochemical cells.

机构信息

Institute for Applied Biosciences, Department of Applied Biology, Karlsruhe Institute of Technology, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany.

Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, D-79110 Freiburg, Germany.

出版信息

Bioresour Technol. 2015 Jun;186:89-96. doi: 10.1016/j.biortech.2015.02.116. Epub 2015 Mar 6.

Abstract

Microbial electrochemical cells are an emerging technology for achieving unbalanced fermentations. However, organisms that can serve as potential biocatalysts for this application are limited by their narrow substrate spectrum. This study describes the reprogramming of Escherichia coli for the efficient use of anodes as electron acceptors. Electron transfer into the periplasm was accelerated by 183% via heterologous expression of the c-type cytochromes CymA, MtrA and STC from Shewanella oneidensis. STC was identified as a target for heterologous expression via a two-stage screening approach. First, mass spectroscopic analysis revealed natively expressed cytochromes in S. oneidensis. Thereafter, the corresponding genes were cloned and expressed in E. coli to quantify periplasmic electron transfer activity using methylene blue. This redox dye was further used to expand electron transfer to carbon electrode surfaces. The results demonstrate that E. coli can be reprogrammed from glycerol fermentation to respiration upon production of the new electron transport chain.

摘要

微生物电化学电池是一种新兴的技术,可用于实现非平衡发酵。然而,能够作为这种应用的潜在生物催化剂的生物体受到其狭窄的底物谱的限制。本研究描述了对大肠杆菌进行重新编程,以有效利用阳极作为电子受体。通过异源表达希瓦氏菌属的 c 型细胞色素 CymA、MtrA 和 STC,将电子转移到周质腔中的速度提高了 183%。通过两阶段筛选方法鉴定出 STC 是异源表达的目标。首先,质谱分析揭示了希瓦氏菌属中天然表达的细胞色素。此后,相应的基因被克隆并在大肠杆菌中表达,以使用亚甲基蓝定量测量周质电子转移活性。这种氧化还原染料进一步用于将电子转移扩展到碳电极表面。结果表明,通过产生新的电子传递链,大肠杆菌可以从甘油发酵重新编程为呼吸作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验