Centre for Molecular and Structural Biochemistry, School of Biological Sciences and School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom.
Institut Laue-Langevin, 38042 Grenoble, France.
J Biol Chem. 2018 May 25;293(21):8103-8112. doi: 10.1074/jbc.RA118.001850. Epub 2018 Apr 10.
Many subsurface microorganisms couple their metabolism to the reduction or oxidation of extracellular substrates. For example, anaerobic mineral-respiring bacteria can use external metal oxides as terminal electron acceptors during respiration. Porin-cytochrome complexes facilitate the movement of electrons generated through intracellular catabolic processes across the bacterial outer membrane to these terminal electron acceptors. In the mineral-reducing model bacterium MR-1, this complex is composed of two decaheme cytochromes (MtrA and MtrC) and an outer-membrane β-barrel (MtrB). However, the structures and mechanisms by which porin-cytochrome complexes transfer electrons are unknown. Here, we used small-angle neutron scattering (SANS) to study the molecular structure of the transmembrane complexes MtrAB and MtrCAB. modeling of the scattering data yielded a molecular envelope with dimensions of ∼105 × 60 × 35 Å for MtrAB and ∼170 × 60 × 45 Å for MtrCAB. The shapes of these molecular envelopes suggested that MtrC interacts with the surface of MtrAB, extending ∼70 Å from the membrane surface and allowing the terminal hemes to interact with both MtrAB and an extracellular acceptor. The data also reveal that MtrA fully extends through the length of MtrB, with ∼30 Å being exposed into the periplasm. Proteoliposome models containing membrane-associated MtrCAB and internalized small tetraheme cytochrome (STC) indicate that MtrCAB could reduce Fe(III) citrate with STC as an electron donor, disclosing a direct interaction between MtrCAB and STC. Taken together, both structural and proteoliposome experiments support porin-cytochrome-mediated electron transfer via periplasmic cytochromes such as STC.
许多地下微生物将其新陈代谢与细胞外基质的还原或氧化偶联。例如,厌氧矿物呼吸细菌可以在呼吸过程中使用外部金属氧化物作为末端电子受体。孔蛋白-细胞色素复合物促进通过细胞内分解代谢过程产生的电子穿过细菌外膜移动到这些末端电子受体。在矿物还原模型菌 MR-1 中,该复合物由两个 decaheme 细胞色素(MtrA 和 MtrC)和一个外膜β桶(MtrB)组成。然而,孔蛋白-细胞色素复合物传递电子的结构和机制尚不清楚。在这里,我们使用小角中子散射(SANS)研究了跨膜复合物 MtrAB 和 MtrCAB 的分子结构。散射数据的建模产生了一个分子包络,其尺寸为 MtrAB 的∼105×60×35 Å,MtrCAB 的∼170×60×45 Å。这些分子包络的形状表明 MtrC 与 MtrAB 的表面相互作用,从膜表面延伸∼70 Å,允许末端血基质与 MtrAB 和细胞外受体相互作用。数据还表明,MtrA 完全穿过 MtrB 的长度,其中∼30 Å 暴露在周质中。含有膜相关 MtrCAB 和内化小四血红素细胞色素(STC)的蛋白脂质体模型表明,MtrCAB 可以用 STC 作为电子供体还原 Fe(III)柠檬酸盐,揭示了 MtrCAB 和 STC 之间的直接相互作用。总之,结构和蛋白脂质体实验都支持通过周质细胞色素(如 STC)进行孔蛋白-细胞色素介导的电子转移。
Proc Natl Acad Sci U S A. 2013-3-28
Appl Environ Microbiol. 2018-11-15
Proc Natl Acad Sci U S A. 2009-12-17
Appl Environ Microbiol. 2019-1-23
Front Microbiol. 2012-2-15
Adv Microb Physiol. 2016
Appl Environ Microbiol. 2016-8-15
Appl Environ Microbiol. 2009-10-16
Appl Environ Microbiol. 2025-6-18
J Chem Inf Model. 2025-5-12
Appl Environ Microbiol. 2024-1-24
Bioelectricity. 2021-6-1
Nat Rev Microbiol. 2022-1
J Appl Crystallogr. 2009-4-1
Adv Microb Physiol. 2016
Methods Enzymol. 2015
J Appl Crystallogr. 2012-3-15
Environ Microbiol Rep. 2014-9-24
Front Microbiol. 2014-6-27
Eur Phys J E Soft Matter. 2013-7