文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种金属还原菌的外膜电子导管的结构建模表明,通过周质氧化还原伴侣进行电子转移。

Structural modeling of an outer membrane electron conduit from a metal-reducing bacterium suggests electron transfer via periplasmic redox partners.

机构信息

Centre for Molecular and Structural Biochemistry, School of Biological Sciences and School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom.

Institut Laue-Langevin, 38042 Grenoble, France.

出版信息

J Biol Chem. 2018 May 25;293(21):8103-8112. doi: 10.1074/jbc.RA118.001850. Epub 2018 Apr 10.


DOI:10.1074/jbc.RA118.001850
PMID:29636412
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5971433/
Abstract

Many subsurface microorganisms couple their metabolism to the reduction or oxidation of extracellular substrates. For example, anaerobic mineral-respiring bacteria can use external metal oxides as terminal electron acceptors during respiration. Porin-cytochrome complexes facilitate the movement of electrons generated through intracellular catabolic processes across the bacterial outer membrane to these terminal electron acceptors. In the mineral-reducing model bacterium MR-1, this complex is composed of two decaheme cytochromes (MtrA and MtrC) and an outer-membrane β-barrel (MtrB). However, the structures and mechanisms by which porin-cytochrome complexes transfer electrons are unknown. Here, we used small-angle neutron scattering (SANS) to study the molecular structure of the transmembrane complexes MtrAB and MtrCAB. modeling of the scattering data yielded a molecular envelope with dimensions of ∼105 × 60 × 35 Å for MtrAB and ∼170 × 60 × 45 Å for MtrCAB. The shapes of these molecular envelopes suggested that MtrC interacts with the surface of MtrAB, extending ∼70 Å from the membrane surface and allowing the terminal hemes to interact with both MtrAB and an extracellular acceptor. The data also reveal that MtrA fully extends through the length of MtrB, with ∼30 Å being exposed into the periplasm. Proteoliposome models containing membrane-associated MtrCAB and internalized small tetraheme cytochrome (STC) indicate that MtrCAB could reduce Fe(III) citrate with STC as an electron donor, disclosing a direct interaction between MtrCAB and STC. Taken together, both structural and proteoliposome experiments support porin-cytochrome-mediated electron transfer via periplasmic cytochromes such as STC.

摘要

许多地下微生物将其新陈代谢与细胞外基质的还原或氧化偶联。例如,厌氧矿物呼吸细菌可以在呼吸过程中使用外部金属氧化物作为末端电子受体。孔蛋白-细胞色素复合物促进通过细胞内分解代谢过程产生的电子穿过细菌外膜移动到这些末端电子受体。在矿物还原模型菌 MR-1 中,该复合物由两个 decaheme 细胞色素(MtrA 和 MtrC)和一个外膜β桶(MtrB)组成。然而,孔蛋白-细胞色素复合物传递电子的结构和机制尚不清楚。在这里,我们使用小角中子散射(SANS)研究了跨膜复合物 MtrAB 和 MtrCAB 的分子结构。散射数据的建模产生了一个分子包络,其尺寸为 MtrAB 的∼105×60×35 Å,MtrCAB 的∼170×60×45 Å。这些分子包络的形状表明 MtrC 与 MtrAB 的表面相互作用,从膜表面延伸∼70 Å,允许末端血基质与 MtrAB 和细胞外受体相互作用。数据还表明,MtrA 完全穿过 MtrB 的长度,其中∼30 Å 暴露在周质中。含有膜相关 MtrCAB 和内化小四血红素细胞色素(STC)的蛋白脂质体模型表明,MtrCAB 可以用 STC 作为电子供体还原 Fe(III)柠檬酸盐,揭示了 MtrCAB 和 STC 之间的直接相互作用。总之,结构和蛋白脂质体实验都支持通过周质细胞色素(如 STC)进行孔蛋白-细胞色素介导的电子转移。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c6a/5971433/be7cd4df5050/zbc0221887670005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c6a/5971433/7121c57dfc45/zbc0221887670001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c6a/5971433/7a9517aab7d2/zbc0221887670002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c6a/5971433/66dbd109fd6c/zbc0221887670003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c6a/5971433/681498fd2d90/zbc0221887670004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c6a/5971433/be7cd4df5050/zbc0221887670005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c6a/5971433/7121c57dfc45/zbc0221887670001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c6a/5971433/7a9517aab7d2/zbc0221887670002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c6a/5971433/66dbd109fd6c/zbc0221887670003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c6a/5971433/681498fd2d90/zbc0221887670004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c6a/5971433/be7cd4df5050/zbc0221887670005.jpg

相似文献

[1]
Structural modeling of an outer membrane electron conduit from a metal-reducing bacterium suggests electron transfer via periplasmic redox partners.

J Biol Chem. 2018-4-10

[2]
Rapid electron exchange between surface-exposed bacterial cytochromes and Fe(III) minerals.

Proc Natl Acad Sci U S A. 2013-3-28

[3]
Divergent Nrf Family Proteins and MtrCAB Homologs Facilitate Extracellular Electron Transfer in Aeromonas hydrophila.

Appl Environ Microbiol. 2018-11-15

[4]
Characterization of an electron conduit between bacteria and the extracellular environment.

Proc Natl Acad Sci U S A. 2009-12-17

[5]
Metal Reduction and Protein Secretion Genes Required for Iodate Reduction by Shewanella oneidensis.

Appl Environ Microbiol. 2019-1-23

[6]
Molecular Underpinnings of Fe(III) Oxide Reduction by Shewanella Oneidensis MR-1.

Front Microbiol. 2012-2-15

[7]
Mechanisms of Bacterial Extracellular Electron Exchange.

Adv Microb Physiol. 2016

[8]
The Crystal Structure of a Biological Insulated Transmembrane Molecular Wire.

Cell. 2020-4-30

[9]
Regulation of Gene Expression in Shewanella oneidensis MR-1 during Electron Acceptor Limitation and Bacterial Nanowire Formation.

Appl Environ Microbiol. 2016-8-15

[10]
Periplasmic electron transfer via the c-type cytochromes MtrA and FccA of Shewanella oneidensis MR-1.

Appl Environ Microbiol. 2009-10-16

引用本文的文献

[1]
Identification of factors limiting the efficiency of transplanting extracellular electron transfer chains in .

Appl Environ Microbiol. 2025-6-18

[2]
Impact of Native Environment in Multiheme-Cytochrome Chains of the MtrCAB Complex.

J Chem Inf Model. 2025-5-12

[3]
Identification of microorganisms at different times in a bioleaching process for the recovery of gold and silver from minerals in oxide form.

Heliyon. 2025-1-10

[4]
The electron transport chain of MR-1 can operate bidirectionally to enable microbial electrosynthesis.

Appl Environ Microbiol. 2024-1-24

[5]
A Cysteine Pair Controls Flavin Reduction by Extracellular Cytochromes during Anoxic/Oxic Environmental Transitions.

mBio. 2023-2-28

[6]
Engineering bacteria to control electron transport altering the synthesis of non-native polymer.

RSC Adv. 2021-12-21

[7]
Bespoke Biomolecular Wires for Transmembrane Electron Transfer: Spontaneous Assembly of a Functionalized Multiheme Electron Conduit.

Front Microbiol. 2021-8-16

[8]
Engineering Biological Electron Transfer and Redox Pathways for Nanoparticle Synthesis.

Bioelectricity. 2021-6-1

[9]
Electromicrobiology: the ecophysiology of phylogenetically diverse electroactive microorganisms.

Nat Rev Microbiol. 2022-1

[10]
Current production by non-methanotrophic bacteria enriched from an anaerobic methane-oxidizing microbial community.

Biofilm. 2021-6-15

本文引用的文献

[1]
, a program for rapid shape determination in small-angle scattering.

J Appl Crystallogr. 2009-4-1

[2]
Mechanisms of Bacterial Extracellular Electron Exchange.

Adv Microb Physiol. 2016

[3]
AUC and Small-Angle Scattering for Membrane Proteins.

Methods Enzymol. 2015

[4]
Characterization of the periplasmic redox network that sustains the versatile anaerobic metabolism of Shewanella oneidensis MR-1.

Front Microbiol. 2015-6-29

[5]
Redox Linked Flavin Sites in Extracellular Decaheme Proteins Involved in Microbe-Mineral Electron Transfer.

Sci Rep. 2015-7-1

[6]
A dynamic periplasmic electron transfer network enables respiratory flexibility beyond a thermodynamic regulatory regime.

ISME J. 2015-8

[7]
New developments in the program package for small-angle scattering data analysis.

J Appl Crystallogr. 2012-3-15

[8]
A trans-outer membrane porin-cytochrome protein complex for extracellular electron transfer by Geobacter sulfurreducens PCA.

Environ Microbiol Rep. 2014-9-24

[9]
Exploring the molecular mechanisms of electron shuttling across the microbe/metal space.

Front Microbiol. 2014-6-27

[10]
Small angle neutron scattering for the study of solubilised membrane proteins.

Eur Phys J E Soft Matter. 2013-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索