Suppr超能文献

朝向希瓦氏菌中的电合成:逆转 mtr 途径进行还原代谢的能量学。

Towards electrosynthesis in shewanella: energetics of reversing the mtr pathway for reductive metabolism.

机构信息

The BioTechnology Institute, University of Minnesota-Twin Cities, St. Paul, Minnesota, United States of America.

出版信息

PLoS One. 2011 Feb 2;6(2):e16649. doi: 10.1371/journal.pone.0016649.

Abstract

Bioelectrochemical systems rely on microorganisms to link complex oxidation/reduction reactions to electrodes. For example, in Shewanella oneidensis strain MR-1, an electron transfer conduit consisting of cytochromes and structural proteins, known as the Mtr respiratory pathway, catalyzes electron flow from cytoplasmic oxidative reactions to electrodes. Reversing this electron flow to drive microbial reductive metabolism offers a possible route for electrosynthesis of high value fuels and chemicals. We examined electron flow from electrodes into Shewanella to determine the feasibility of this process, the molecular components of reductive electron flow, and what driving forces were required. Addition of fumarate to a film of S. oneidensis adhering to a graphite electrode poised at -0.36 V versus standard hydrogen electrode (SHE) immediately led to electron uptake, while a mutant lacking the periplasmic fumarate reductase FccA was unable to utilize electrodes for fumarate reduction. Deletion of the gene encoding the outer membrane cytochrome-anchoring protein MtrB eliminated 88% of fumarate reduction. A mutant lacking the periplasmic cytochrome MtrA demonstrated more severe defects. Surprisingly, disruption of menC, which prevents menaquinone biosynthesis, eliminated 85% of electron flux. Deletion of the gene encoding the quinone-linked cytochrome CymA had a similar negative effect, which showed that electrons primarily flowed from outer membrane cytochromes into the quinone pool, and back to periplasmic FccA. Soluble redox mediators only partially restored electron transfer in mutants, suggesting that soluble shuttles could not replace periplasmic protein-protein interactions. This work demonstrates that the Mtr pathway can power reductive reactions, shows this conduit is functionally reversible, and provides new evidence for distinct CymA:MtrA and CymA:FccA respiratory units.

摘要

生物电化学系统依赖微生物将复杂的氧化/还原反应与电极连接起来。例如,在希瓦氏菌属(Shewanella)的一种菌株 MR-1 中,一种由细胞色素和结构蛋白组成的电子传递导管,称为 Mtr 呼吸途径,催化从细胞质氧化反应到电极的电子流动。将这种电子流反转以驱动微生物还原代谢,可以为高价值燃料和化学品的电合成提供一种可能的途径。我们研究了电子从电极流入希瓦氏菌属以确定这个过程的可行性、还原电子流的分子成分以及需要什么驱动力。向附着在石墨电极上的希瓦氏菌属薄膜中添加延胡索酸盐,会立即导致电子摄取,而缺乏周质延胡索酸盐还原酶 FccA 的突变体无法利用电极还原延胡索酸盐。删除编码外膜细胞色素锚定蛋白 MtrB 的基因消除了 88%的延胡索酸盐还原。缺乏周质细胞色素 MtrA 的突变体表现出更严重的缺陷。令人惊讶的是,破坏 menC(阻止menaquinone 生物合成)消除了 85%的电子通量。删除编码醌结合细胞色素 CymA 的基因具有类似的负面影响,表明电子主要从外膜细胞色素流入醌库,然后再回到周质 FccA。可溶性氧化还原介体仅部分恢复了突变体中的电子转移,表明可溶性穿梭物不能替代周质蛋白-蛋白相互作用。这项工作表明 Mtr 途径可以为还原反应提供动力,显示该导管在功能上是可逆的,并为独特的 CymA:MtrA 和 CymA:FccA 呼吸单位提供了新的证据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/790b/3032769/4f787f97dea1/pone.0016649.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验