BioTechnology Institute, University of Minnesota Twin Cities, St. Paul, Minnesota, USA.
mBio. 2010 Nov 2;1(5):e00190-10. doi: 10.1128/mBio.00190-10.
Cellular metabolism is a series of tightly linked oxidations and reductions that must be balanced. Recycling of intracellular electron carriers during fermentation often requires substrate conversion to undesired products, while respiration demands constant addition of electron acceptors. The use of electrode-based electron acceptors to balance biotransformations may overcome these constraints. To test this hypothesis, the metal-reducing bacterium Shewanella oneidensis was engineered to stoichiometrically convert glycerol into ethanol, a biotransformation that will not occur unless two electrons are removed via an external reaction, such as electrode reduction. Multiple modules were combined into a single plasmid to alter S. oneidensis metabolism: a glycerol module, consisting of glpF, glpK, glpD, and tpiA from Escherichia coli, and an ethanol module containing pdc and adh from Zymomonas mobilis. A further increase in product yields was accomplished through knockout of pta, encoding phosphate acetyltransferase, shifting flux toward ethanol and away from acetate production. In this first-generation demonstration, conversion of glycerol to ethanol required the presence of an electrode to balance the reaction, and electrode-linked rates were on par with volumetric conversion rates observed in engineered E. coli. Linking microbial biocatalysis to current production can eliminate redox constraints by shifting other unbalanced reactions to yield pure products and serve as a new platform for next-generation bioproduction strategies.
细胞代谢是一系列紧密相连的氧化还原反应,必须保持平衡。发酵过程中细胞内电子载体的循环通常需要将底物转化为不理想的产物,而呼吸则需要不断添加电子受体。使用基于电极的电子受体来平衡生物转化可能会克服这些限制。为了验证这一假设,研究人员对金属还原菌希瓦氏菌(Shewanella oneidensis)进行了工程改造,使其能够将甘油定量转化为乙醇,除非通过外部反应(如电极还原)去除两个电子,否则不会发生这种生物转化。多个模块被组合到一个质粒中,以改变 S. oneidensis 的代谢:一个甘油模块,由大肠杆菌中的 glpF、glpK、glpD 和 tpiA 组成,以及一个含有 Zymomonas mobilis 的 pdc 和 adh 的乙醇模块。通过敲除编码磷酸乙酰转移酶的 pta,进一步提高了产物产量,使通量向乙醇转移,远离乙酸的产生。在第一代演示中,甘油到乙醇的转化需要电极来平衡反应,而与电极相连的速率与在工程大肠杆菌中观察到的体积转化率相当。将微生物生物催化与电流生产联系起来,可以通过将其他不平衡反应转移到产生纯产物上来消除氧化还原限制,并为下一代生物生产策略提供一个新的平台。