Sun Jiachen, Zhang Le, Loh Kai-Chee
Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117576, Singapore.
NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore, 138602, Singapore.
Bioresour Bioprocess. 2021 Aug 2;8(1):68. doi: 10.1186/s40643-021-00420-3.
Lignocellulosic biomass wastes are abundant resources that are usually valorized for methane-rich biogas via anaerobic digestion. Conversion of lignocellulose into volatile fatty acids (VFA) rather than biogas is attracting attention due to the higher value-added products that come with VFA utilization. This review consolidated the latest studies associated with characteristics of lignocellulosic biomass, the effects of process parameters during acidogenic fermentation, and the intensification strategies to accumulate more VFA. The differences between anaerobic digestion technology and acidogenic fermentation technology were discussed. Performance-enhancing strategies surveyed included (1) alkaline fermentation; (2) co-digestion and high solid-state fermentation; (3) pretreatments; (4) use of high loading rate and short retention time; (5) integration with electrochemical technology, and (6) adoption of membrane bioreactors. The recommended operations include: mesophilic temperature (thermophilic for high loading rate fermentation), C/N ratio (20-40), OLR (< 12 g volatile solids (VS)/(L·d)), and the maximum HRT (8-12 days), alkaline fermentation, membrane technology or electrodialysis recovery. Lastly, perspectives were put into place based on critical analysis on status of acidogenic fermentation of lignocellulosic biomass wastes for VFA production.
木质纤维素生物质废物是丰富的资源,通常通过厌氧消化转化为富含甲烷的沼气。由于挥发性脂肪酸(VFA)利用带来的高附加值产品,将木质纤维素转化为挥发性脂肪酸而非沼气正受到关注。本综述汇总了与木质纤维素生物质特性、产酸发酵过程中工艺参数的影响以及积累更多挥发性脂肪酸的强化策略相关的最新研究。讨论了厌氧消化技术和产酸发酵技术之间的差异。调查的性能增强策略包括:(1)碱性发酵;(2)共消化和高固态发酵;(3)预处理;(4)使用高负荷率和短停留时间;(5)与电化学技术集成,以及(6)采用膜生物反应器。推荐的操作包括:中温温度(高负荷率发酵采用高温)、碳氮比(20 - 40)、有机负荷率(< 12 g挥发性固体(VS)/(L·d))以及最大水力停留时间(8 - 12天)、碱性发酵、膜技术或电渗析回收。最后,基于对木质纤维素生物质废物产酸发酵生产挥发性脂肪酸现状的批判性分析,提出了展望。