Suppr超能文献

使用明胶水凝胶片持续释放骨形态发生蛋白-7刺激肩袖修复

Stimulation of Rotator Cuff Repair by Sustained Release of Bone Morphogenetic Protein-7 Using a Gelatin Hydrogel Sheet.

作者信息

Kabuto Yukichi, Morihara Toru, Sukenari Tsuyoshi, Kida Yoshikazu, Oda Ryo, Arai Yuji, Sawada Koshiro, Matsuda Ken-Ichi, Kawata Mitsuhiro, Tabata Yasuhiko, Fujiwara Hiroyoshi, Kubo Toshikazu

机构信息

1 Department of Orthopaedics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine , Kyoto, Japan .

2 Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine , Kyoto, Japan .

出版信息

Tissue Eng Part A. 2015 Jul;21(13-14):2025-33. doi: 10.1089/ten.TEA.2014.0541. Epub 2015 May 12.

Abstract

Bone morphogenetic protein-7 (BMP-7) promotes not only osteogenesis but also matrix production in chondrocytes and tenocytes. However, because of its short half-life, maintaining local concentrations of BMP-7 is difficult. We examined the use of a gelatin hydrogel sheet (GHS) for the sustained release of BMP-7 in stimulating rotator cuff repair at the tendon-to-bone insertion. Twelve-week-old male Sprague-Dawley rats were used. Radiolabeled BMP-7 ((125)I-BMP-7) was injected into the subacromial bursa in the (125)I-BMP-7 group, whereas a GHS impregnated with (125)I-BMP-7 was implanted on the tendon attached to the tendon-to-bone insertion in the (125)I-BMP-7+GHS group. Levels of (125)I-BMP-7 in the tendon-to-bone insertion were assessed at 1, 3, 7, 14, and 21 postoperative days. The BMP-7 concentrations were significantly higher in the (125)I-BMP-7+GHS group than in the (125)I-BMP-7 group. Next, the bilateral supraspinatus tendons were resected and sutured to the greater tuberosity of the humerus using the Mason-Allen technique. Treatment groups were created as follows: either phosphate-buffered saline (PBS) or BMP-7 was injected into the subacromial bursa in the PBS and BMP-7 groups, whereas a GHS impregnated with either PBS or BMP-7 was implanted on the repaired tendon attached to the tendon-to-bone insertion in the PBS+GHS and BMP-7+GHS groups. The resected specimens were stained at 2, 4, and 8 postoperative weeks with hematoxylin and eosin as well as Safranin O, and tissue repair was evaluated histologically by using the tendon-to-bone maturing score. Tissue repair was assessed biomechanically at 4 and 8 postoperative weeks. The BMP-7+GHS group at 8 postoperative weeks demonstrated a favorable cartilage matrix production and tendon orientation; moreover, the tendon-to-bone maturing score and the ultimate force-to-failure were the highest in this group. The ability of GHS to provide controlled release of various growth factors has been previously reported. We confirmed that the GHS releases BMP-7 in a sustained manner in the rat shoulder joint. At 8 postoperative weeks, the repaired tissue was mostly restored, both histologically and biomechanically, in the BMP-7+GHS group. We therefore conclude that the sustained release of BMP-7 from a GHS can stimulate rotator cuff repair.

摘要

骨形态发生蛋白-7(BMP-7)不仅能促进成骨,还能促进软骨细胞和肌腱细胞的基质生成。然而,由于其半衰期短,维持BMP-7的局部浓度很困难。我们研究了使用明胶水凝胶片(GHS)来持续释放BMP-7,以刺激肌腱-骨连接处的肩袖修复。使用12周龄的雄性Sprague-Dawley大鼠。在125I-BMP-7组中,将放射性标记的BMP-7(125I-BMP-7)注入肩峰下囊,而在125I-BMP-7+GHS组中,将浸渍有125I-BMP-7的GHS植入附着于肌腱-骨连接处的肌腱上。在术后1、3、7、14和21天评估肌腱-骨连接处的125I-BMP-7水平。125I-BMP-7+GHS组中的BMP-7浓度显著高于125I-BMP-7组。接下来,切除双侧冈上肌腱,并使用梅森-艾伦技术将其缝合至肱骨大结节。治疗组如下创建:在PBS组和BMP-7组中,将磷酸盐缓冲盐水(PBS)或BMP-7注入肩峰下囊,而在PBS+GHS组和BMP-7+GHS组中,将浸渍有PBS或BMP-7的GHS植入附着于肌腱-骨连接处的修复肌腱上。在术后2、4和8周,将切除的标本用苏木精和伊红以及番红O染色,并使用肌腱-骨成熟评分进行组织学评估组织修复情况。在术后4和8周进行生物力学评估组织修复情况。术后8周时,BMP-7+GHS组显示出良好的软骨基质生成和肌腱排列;此外,该组的肌腱-骨成熟评分和极限破坏力最高。先前已有报道GHS具有控制释放各种生长因子的能力。我们证实GHS在大鼠肩关节中以持续方式释放BMP-7。术后8周时,BMP-7+GHS组的修复组织在组织学和生物力学方面大多已恢复。因此,我们得出结论,GHS持续释放BMP-7可刺激肩袖修复。

相似文献

1
Stimulation of Rotator Cuff Repair by Sustained Release of Bone Morphogenetic Protein-7 Using a Gelatin Hydrogel Sheet.
Tissue Eng Part A. 2015 Jul;21(13-14):2025-33. doi: 10.1089/ten.TEA.2014.0541. Epub 2015 May 12.
3
Enhancement of rotator cuff tendon-bone healing with fibroblast growth factor 2 impregnated in gelatin hydrogel sheets in a rabbit model.
J Shoulder Elbow Surg. 2017 Oct;26(10):1708-1717. doi: 10.1016/j.jse.2017.03.020. Epub 2017 May 11.
5
Enhancement of rotator cuff tendon-bone healing with injectable periosteum progenitor cells-BMP-2 hydrogel in vivo.
Knee Surg Sports Traumatol Arthrosc. 2011 Sep;19(9):1597-607. doi: 10.1007/s00167-010-1373-0. Epub 2011 Feb 16.
6
Effect of kartogenin-loaded gelatin methacryloyl hydrogel scaffold with bone marrow stimulation for enthesis healing in rotator cuff repair.
J Shoulder Elbow Surg. 2021 Mar;30(3):544-553. doi: 10.1016/j.jse.2020.06.013. Epub 2020 Jul 7.
7
Hyaluronic Acid Accelerates Tendon-to-Bone Healing After Rotator Cuff Repair.
Am J Sports Med. 2017 Dec;45(14):3322-3330. doi: 10.1177/0363546517720199. Epub 2017 Sep 5.
8
Effect of diet-induced vitamin D deficiency on rotator cuff healing in a rat model.
Am J Sports Med. 2014 Jan;42(1):27-34. doi: 10.1177/0363546513505421. Epub 2013 Oct 16.
9
Effect of the Interposition of Calcium Phosphate Materials on Tendon-Bone Healing During Repair of Chronic Rotator Cuff Tear.
Am J Sports Med. 2014 Aug;42(8):1920-9. doi: 10.1177/0363546514532781. Epub 2014 May 22.

引用本文的文献

1
Mesenchymal stem cell activity across a graded scaffold-hydrogel composite biomaterial for tendon-to-bone enthesis repair.
Bioact Mater. 2025 Jul 15;53:287-299. doi: 10.1016/j.bioactmat.2025.07.017. eCollection 2025 Nov.
3
Advances in the application of hydrogel-based scaffolds for tendon repair.
Genes Dis. 2023 Jul 7;11(4):101019. doi: 10.1016/j.gendis.2023.04.039. eCollection 2024 Jul.
4
Biological approaches to the repair and regeneration of the rotator cuff tendon-bone enthesis: a literature review.
Biomater Transl. 2023 Jun 28;4(2):85-103. doi: 10.12336/biomatertransl.2023.02.004. eCollection 2023.
5
6
Hydrogel Development for Rotator Cuff Repair.
Front Bioeng Biotechnol. 2022 Jun 15;10:851660. doi: 10.3389/fbioe.2022.851660. eCollection 2022.
7
Natural, synthetic and commercially-available biopolymers used to regenerate tendons and ligaments.
Bioact Mater. 2022 Apr 13;19:179-197. doi: 10.1016/j.bioactmat.2022.04.003. eCollection 2023 Jan.
8
Evaluation of patches for rotator cuff repair: A systematic review and meta-analysis based on animal studies.
Bioact Mater. 2021 Aug 28;10:474-491. doi: 10.1016/j.bioactmat.2021.08.016. eCollection 2022 Apr.
10
[Research progress of interfacial tissue engineering in rotator cuff repair].
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi. 2021 Oct 15;35(10):1341-1351. doi: 10.7507/1002-1892.202104064.

本文引用的文献

1
Histopathological scores for tissue-engineered, repaired and degenerated tendon: a systematic review of the literature.
Curr Stem Cell Res Ther. 2015;10(1):43-55. doi: 10.2174/1574888x09666140710110723.
2
Efficacy of a mesenchymal stem cell loaded surgical mesh for tendon repair in rats.
J Transl Med. 2014 May 2;12:110. doi: 10.1186/1479-5876-12-110.
4
Timing matters: NSAIDs interfere with the late proliferation stage of a repaired rotator cuff tendon healing in rats.
Arch Orthop Trauma Surg. 2014 Apr;134(4):515-20. doi: 10.1007/s00402-014-1928-5. Epub 2014 Jan 29.
5
Repair integrity and functional outcomes for arthroscopic margin convergence of rotator cuff tears.
J Bone Joint Surg Am. 2013 Mar 20;95(6):536-41. doi: 10.2106/JBJS.L.00397.
7
Shoulder stiffness after rotator cuff repair: risk factors and influence on outcome.
Arthroscopy. 2013 Feb;29(2):290-300. doi: 10.1016/j.arthro.2012.08.023. Epub 2013 Jan 3.
8
Arthroscopic rotator cuff repair using modified Mason-Allen medial row stitch: knotless versus knot-tying suture bridge technique.
Am J Sports Med. 2012 Nov;40(11):2440-7. doi: 10.1177/0363546512459170. Epub 2012 Sep 21.
10
Bone marrow-derived cells from the footprint infiltrate into the repaired rotator cuff.
J Shoulder Elbow Surg. 2013 Feb;22(2):197-205. doi: 10.1016/j.jse.2012.02.007. Epub 2012 Apr 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验