Suppr超能文献

冠状病毒和流感病毒的蛋白水解引发作用发生在富含四跨膜蛋白的膜微区中。

Coronavirus and influenza virus proteolytic priming takes place in tetraspanin-enriched membrane microdomains.

作者信息

Earnest James T, Hantak Michael P, Park Jung-Eun, Gallagher Tom

机构信息

Department of Microbiology and Immunology, Loyola University Medical Center, Maywood, Illinois, USA.

Department of Microbiology and Immunology, Loyola University Medical Center, Maywood, Illinois, USA

出版信息

J Virol. 2015 Jun;89(11):6093-104. doi: 10.1128/JVI.00543-15. Epub 2015 Apr 1.

Abstract

UNLABELLED

Coronaviruses (CoVs) and low-pathogenicity influenza A viruses (LP IAVs) depend on target cell proteases to cleave their viral glycoproteins and prime them for virus-cell membrane fusion. Several proteases cluster into tetraspanin-enriched microdomains (TEMs), suggesting that TEMs are preferred virus entry portals. Here we found that several CoV receptors and virus-priming proteases were indeed present in TEMs. Isolated TEMs, when mixed with CoV and LP IAV pseudoparticles, cleaved viral fusion proteins to fusion-primed fragments and potentiated viral transductions. That entering viruses utilize TEMs as a protease source was further confirmed using tetraspanin antibodies and tetraspanin short hairpin RNAs (shRNAs). Tetraspanin antibodies inhibited CoV and LP IAV infections, but their virus-blocking activities were overcome by expressing excess TEM-associated proteases. Similarly, cells with reduced levels of the tetraspanin CD9 resisted CoV pseudoparticle transductions but were made susceptible by overproducing TEM-associated proteases. These findings indicated that antibodies and CD9 depletions interfere with viral proteolytic priming in ways that are overcome by surplus proteases. TEMs appear to be exploited by some CoVs and LP IAVs for appropriate coengagement with cell receptors and proteases.

IMPORTANCE

Enveloped viruses use their surface glycoproteins to catalyze membrane fusion, an essential cell entry step. Host cell components prime these viral surface glycoproteins to catalyze membrane fusion at specific times and places during virus cell entry. Among these priming components are proteases, which cleave viral surface glycoproteins, unleashing them to refold in ways that catalyze virus-cell membrane fusions. For some enveloped viruses, these proteases are known to reside on target cell surfaces. This research focuses on coronavirus and influenza A virus cell entry and identifies TEMs as sites of viral proteolysis, thereby defining subcellular locations of virus priming with greater precision. Implications of these findings extend to the use of virus entry antagonists, such as protease inhibitors, which might be most effective when localized to these microdomains.

摘要

未标记

冠状病毒(CoV)和低致病性甲型流感病毒(LP IAV)依赖靶细胞蛋白酶切割其病毒糖蛋白,并使其为病毒-细胞膜融合做好准备。几种蛋白酶聚集在富含四跨膜蛋白的微区(TEM)中,这表明TEM是病毒进入的首选门户。我们发现几种CoV受体和病毒启动蛋白酶确实存在于TEM中。分离的TEM与CoV和LP IAV假病毒颗粒混合时,会将病毒融合蛋白切割成融合启动片段,并增强病毒转导。使用四跨膜蛋白抗体和四跨膜蛋白短发夹RNA(shRNA)进一步证实了进入的病毒将TEM用作蛋白酶来源。四跨膜蛋白抗体抑制CoV和LP IAV感染,但通过表达过量的TEM相关蛋白酶可克服其病毒阻断活性。同样,四跨膜蛋白CD9水平降低的细胞抵抗CoV假病毒颗粒转导,但通过过量产生TEM相关蛋白酶而变得易感。这些发现表明,抗体和CD9缺失以可被过量蛋白酶克服的方式干扰病毒蛋白水解启动。一些CoV和LP IAV似乎利用TEM与细胞受体和蛋白酶进行适当的共结合。

重要性

包膜病毒利用其表面糖蛋白催化膜融合,这是细胞进入的关键步骤。宿主细胞成分在病毒进入细胞的特定时间和地点启动这些病毒表面糖蛋白,以催化膜融合。这些启动成分包括蛋白酶,其切割病毒表面糖蛋白,使其以催化病毒-细胞膜融合的方式重新折叠。对于一些包膜病毒,已知这些蛋白酶存在于靶细胞表面。本研究聚焦于冠状病毒和甲型流感病毒的细胞进入,并将TEM鉴定为病毒蛋白水解的位点,从而更精确地定义病毒启动的亚细胞位置。这些发现的意义延伸到病毒进入拮抗剂的使用,如蛋白酶抑制剂,当定位于这些微区时可能最有效。

相似文献

1
Coronavirus and influenza virus proteolytic priming takes place in tetraspanin-enriched membrane microdomains.
J Virol. 2015 Jun;89(11):6093-104. doi: 10.1128/JVI.00543-15. Epub 2015 Apr 1.
2
The tetraspanin CD9 facilitates MERS-coronavirus entry by scaffolding host cell receptors and proteases.
PLoS Pathog. 2017 Jul 31;13(7):e1006546. doi: 10.1371/journal.ppat.1006546. eCollection 2017 Jul.
5
Quantitative membrane proteomics reveals a role for tetraspanin enriched microdomains during entry of human cytomegalovirus.
PLoS One. 2017 Nov 9;12(11):e0187899. doi: 10.1371/journal.pone.0187899. eCollection 2017.
6
Tetraspanin Assemblies in Virus Infection.
Front Immunol. 2018 May 25;9:1140. doi: 10.3389/fimmu.2018.01140. eCollection 2018.
7
Proteolytic processing of Middle East respiratory syndrome coronavirus spikes expands virus tropism.
Proc Natl Acad Sci U S A. 2016 Oct 25;113(43):12262-12267. doi: 10.1073/pnas.1608147113. Epub 2016 Oct 10.
8
Mapping of tetraspanin-enriched microdomains that can function as gateways for HIV-1.
J Cell Biol. 2006 Jun 5;173(5):795-807. doi: 10.1083/jcb.200508165. Epub 2006 May 30.
9
Tetraspanins: Architects of Viral Entry and Exit Platforms.
J Virol. 2019 Mar 5;93(6). doi: 10.1128/JVI.01429-17. Print 2019 Mar 15.
10
Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner.
PLoS Pathog. 2014 Nov 6;10(11):e1004502. doi: 10.1371/journal.ppat.1004502. eCollection 2014 Nov.

引用本文的文献

2
Migrasomes, critical players in intercellular communication.
Cancer Cell Int. 2025 Mar 25;25(1):113. doi: 10.1186/s12935-025-03754-6.
4
Inhibition of HIV-1 replication by nanobodies targeting tetraspanin CD9.
iScience. 2024 Sep 13;27(10):110958. doi: 10.1016/j.isci.2024.110958. eCollection 2024 Oct 18.
5
Tetraspanin proteins in membrane remodeling processes.
J Cell Sci. 2024 Jul 15;137(14). doi: 10.1242/jcs.261532. Epub 2024 Jul 25.
6
Recent Advances on Targeting Proteases for Antiviral Development.
Viruses. 2024 Feb 27;16(3):366. doi: 10.3390/v16030366.
7
Phospho-eIF4E stimulation regulates coronavirus entry by selective expression of cell membrane-residential factors.
J Virol. 2024 Feb 20;98(2):e0194823. doi: 10.1128/jvi.01948-23. Epub 2024 Feb 1.
8
Flu vaccine administration in the period before SARS-CoV-2 infection and its outcomes: An umbrella review.
Prev Med Rep. 2023 Dec 27;38:102575. doi: 10.1016/j.pmedr.2023.102575. eCollection 2024 Feb.
9
SEC14-like condensate phase transitions at plasma membranes regulate root growth in Arabidopsis.
PLoS Biol. 2023 Sep 18;21(9):e3002305. doi: 10.1371/journal.pbio.3002305. eCollection 2023 Sep.
10
Prognostic value and multifaceted roles of tetraspanin CD9 in cancer.
Front Oncol. 2023 Mar 17;13:1140738. doi: 10.3389/fonc.2023.1140738. eCollection 2023.

本文引用的文献

1
Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein.
Proc Natl Acad Sci U S A. 2014 Oct 21;111(42):15214-9. doi: 10.1073/pnas.1407087111. Epub 2014 Oct 6.
3
Receptor variation and susceptibility to Middle East respiratory syndrome coronavirus infection.
J Virol. 2014 May;88(9):4953-61. doi: 10.1128/JVI.00161-14. Epub 2014 Feb 19.
6
Tmprss2 is essential for influenza H1N1 virus pathogenesis in mice.
PLoS Pathog. 2013;9(12):e1003774. doi: 10.1371/journal.ppat.1003774. Epub 2013 Dec 5.
8
Dual function of CD81 in influenza virus uncoating and budding.
PLoS Pathog. 2013;9(10):e1003701. doi: 10.1371/journal.ppat.1003701. Epub 2013 Oct 10.
9
Middle East respiratory syndrome coronavirus infection mediated by the transmembrane serine protease TMPRSS2.
J Virol. 2013 Dec;87(23):12552-61. doi: 10.1128/JVI.01890-13. Epub 2013 Sep 11.
10
Significance of glycosylphosphatidylinositol-anchored protein enrichment in lipid rafts for the control of autoimmunity.
J Biol Chem. 2013 Aug 30;288(35):25490-25499. doi: 10.1074/jbc.M113.492611. Epub 2013 Jul 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验