Suppr超能文献

马疱疹病毒1型多重插入跨膜蛋白pUL43与pUL56协同下调细胞表面主要组织相容性复合体I类分子。

Equine Herpesvirus 1 Multiply Inserted Transmembrane Protein pUL43 Cooperates with pUL56 in Downregulation of Cell Surface Major Histocompatibility Complex Class I.

作者信息

Huang Teng, Ma Guanggang, Osterrieder Nikolaus

机构信息

Institut für Virologie, Zentrum für Infektionsmedizin-Robert von Ostertag-Haus, Freie Universität Berlin, Berlin, Germany.

Institut für Virologie, Zentrum für Infektionsmedizin-Robert von Ostertag-Haus, Freie Universität Berlin, Berlin, Germany

出版信息

J Virol. 2015 Jun;89(12):6251-63. doi: 10.1128/JVI.00032-15. Epub 2015 Apr 1.

Abstract

UNLABELLED

Herpesviruses have evolved an array of strategies to counteract antigen presentation by major histocompatibility complex class I (MHC-I). Previously, we identified pUL56 of equine herpesvirus 1 (EHV-1) as one major determinant of the downregulation of cell surface MHC-I (G. Ma, S. Feineis, N. Osterrieder, and G. R. Van de Walle, J. Virol. 86:3554-3563, 2012, http://dx.doi.org/10.1128/JVI.06994-11; T. Huang, M. J. Lehmann, A. Said, G. Ma, and N. Osterrieder, J. Virol. 88:12802-12815, 2014, http://dx.doi.org/10.1128/JVI.02079-14). Since pUL56 was able to exert its function only in the context of virus infection, we hypothesized that pUL56 cooperates with another viral protein. Here, we generated and screened a series of EHV-1 single-gene deletion mutants and found that the pUL43 orthologue was required for downregulation of cell surface MHC-I expression at the same time of infection as when pUL56 exerts its function. We demonstrate that the absence of pUL43 was not deleterious to virus growth and that expression of pUL43 was detectable from 2 h postinfection (p.i.) but decreased after 8 h p.i. due to lysosomal degradation. pUL43 localized within Golgi vesicles and required a unique hydrophilic N-terminal domain to function properly. Finally, coexpression of pUL43 and pUL56 in transfected cells reduced the cell surface expression of MHC-I. This process was dependent on PPxY motifs present in pUL56, suggesting that late domains are required for pUL43- and pUL56-dependent sorting of MHC class I for lysosomal degradation.

IMPORTANCE

We describe here that the poorly characterized herpesviral protein pUL43 is involved in downregulation of cell surface MHC-I. pUL43 is an early protein and degraded in lysosomes. pUL43 resides in the Golgi vesicles and needs an intact N terminus to induce MHC-I downregulation in infected cells. Importantly, pUL43 and pUL56 cooperate to reduce MHC-I expression on the surface of transfected cells. Our results suggest a model for MHC-I downregulation in which late domains in pUL56 are required for the rerouting of vesicles containing MHC-I, pUL56, and pUL43 to the lysosomal compartment.

摘要

未标记

疱疹病毒已经进化出一系列策略来对抗主要组织相容性复合体I类(MHC-I)介导的抗原呈递。此前,我们鉴定出马疱疹病毒1型(EHV-1)的pUL56是细胞表面MHC-I下调的一个主要决定因素(G. Ma、S. Feineis、N. Osterrieder和G. R. Van de Walle,《病毒学杂志》86:3554 - 3563,2012年,http://dx.doi.org/10.1128/JVI.06994 - 11;T. Huang、M. J. Lehmann、A. Said、G. Ma和N. Osterrieder,《病毒学杂志》88:12802 - 12815,2014年,http://dx.doi.org/10.1128/JVI.02079 - 14)。由于pUL56仅在病毒感染的背景下才能发挥其功能,我们推测pUL56与另一种病毒蛋白协同作用。在此,我们构建并筛选了一系列EHV-1单基因缺失突变体,发现pUL43同源物在感染时与pUL56发挥功能的同时,是细胞表面MHC-I表达下调所必需的。我们证明pUL43的缺失对病毒生长无害,并且在感染后2小时(p.i.)即可检测到pUL43的表达,但在感染后8小时因溶酶体降解而降低。pUL43定位于高尔基体囊泡内,并且需要一个独特的亲水性N端结构域才能正常发挥功能。最后,在转染细胞中共表达pUL43和pUL56可降低MHC-I的细胞表面表达。这一过程依赖于pUL56中存在的PPxY基序,表明晚期结构域是pUL43和pUL56依赖的MHC I类分子分选至溶酶体降解所必需的。

重要性

我们在此描述了特征不明的疱疹病毒蛋白pUL43参与细胞表面MHC-I的下调。pUL43是一种早期蛋白,在溶酶体中降解。pUL43定位于高尔基体囊泡内,并且需要完整的N端才能在感染细胞中诱导MHC-I下调。重要的是,pUL4

相似文献

4
5
Equine herpesvirus type 1 pUL56 modulates innate responses of airway epithelial cells.
Virology. 2014 Sep;464-465:76-86. doi: 10.1016/j.virol.2014.05.023. Epub 2014 Jul 19.
10
Absence of viral envelope proteins in equine herpesvirus 1-infected blood mononuclear cells during cell-associated viremia.
Vet Microbiol. 2006 Mar 31;113(3-4):265-73. doi: 10.1016/j.vetmic.2005.11.048. Epub 2006 Jan 18.

引用本文的文献

1
MHC-I pathway disruption by viruses: insights into immune evasion and vaccine design for animals.
Front Immunol. 2025 May 8;16:1540159. doi: 10.3389/fimmu.2025.1540159. eCollection 2025.
4
The Pathogenesis and Immune Evasive Mechanisms of Equine Herpesvirus Type 1.
Front Microbiol. 2021 Mar 4;12:662686. doi: 10.3389/fmicb.2021.662686. eCollection 2021.
5
Evasion of the Cell-Mediated Immune Response by Alphaherpesviruses.
Viruses. 2020 Nov 26;12(12):1354. doi: 10.3390/v12121354.
7
EHV-1: A Constant Threat to the Horse Industry.
Front Microbiol. 2019 Dec 3;10:2668. doi: 10.3389/fmicb.2019.02668. eCollection 2019.
8
The pseudorabies virus protein, pUL56, enhances virus dissemination and virulence but is dispensable for axonal transport.
Virology. 2016 Jan 15;488:179-86. doi: 10.1016/j.virol.2015.11.014. Epub 2015 Dec 1.
9
Fluorescent Protein Approaches in Alpha Herpesvirus Research.
Viruses. 2015 Nov 19;7(11):5933-61. doi: 10.3390/v7112915.
10
The herpesvirus stealth program.
Oncotarget. 2015 Sep 8;6(26):21761-2. doi: 10.18632/oncotarget.5261.

本文引用的文献

1
4
Equine herpesviruses type 1 (EHV-1) and 4 (EHV-4)--masters of co-evolution and a constant threat to equids and beyond.
Vet Microbiol. 2013 Nov 29;167(1-2):123-34. doi: 10.1016/j.vetmic.2013.06.018. Epub 2013 Jul 6.
5
Molecular biology techniques Q&A. Western blot: protein migration.
Biotechniques. 2012 Jul;53(1):23-4. doi: 10.2144/000113887.
7
Towards a systems understanding of MHC class I and MHC class II antigen presentation.
Nat Rev Immunol. 2011 Nov 11;11(12):823-36. doi: 10.1038/nri3084.
9
CD8(+) T cells: foot soldiers of the immune system.
Immunity. 2011 Aug 26;35(2):161-8. doi: 10.1016/j.immuni.2011.07.010.
10
High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice.
PLoS One. 2011;6(4):e18556. doi: 10.1371/journal.pone.0018556. Epub 2011 Apr 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验