文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Parameters and characteristics governing cellular internalization and trans-barrier trafficking of nanostructures.

作者信息

Murugan Karmani, Choonara Yahya E, Kumar Pradeep, Bijukumar Divya, du Toit Lisa C, Pillay Viness

机构信息

Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.

出版信息

Int J Nanomedicine. 2015 Mar 18;10:2191-206. doi: 10.2147/IJN.S75615. eCollection 2015.


DOI:10.2147/IJN.S75615
PMID:25834433
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC4370919/
Abstract

Cellular internalization and trans-barrier transport of nanoparticles can be manipulated on the basis of the physicochemical and mechanical characteristics of nanoparticles. Research has shown that these factors significantly influence the uptake of nanoparticles. Dictating these characteristics allows for the control of the rate and extent of cellular uptake, as well as delivering the drug-loaded nanosystem intra-cellularly, which is imperative for drugs that require a specific cellular level to exert their effects. Additionally, physicochemical characteristics of the nanoparticles should be optimal for the nanosystem to bypass the natural restricting phenomena of the body and act therapeutically at the targeted site. The factors at the focal point of emerging smart nanomedicines include nanoparticle size, surface charge, shape, hydrophobicity, surface chemistry, and even protein and ligand conjugates. Hence, this review discusses the mechanism of internalization of nanoparticles and ideal nanoparticle characteristics that allow them to evade the biological barriers in order to achieve optimal cellular uptake in different organ systems. Identifying these parameters assists with the progression of nanomedicine as an outstanding vector of pharmaceuticals.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b34/4370919/b753920076c6/ijn-10-2191Fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b34/4370919/50e2f9bf4b6f/ijn-10-2191Fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b34/4370919/8d7e0842e740/ijn-10-2191Fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b34/4370919/2678353831a6/ijn-10-2191Fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b34/4370919/c2b78ddd4959/ijn-10-2191Fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b34/4370919/647d91636af1/ijn-10-2191Fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b34/4370919/a0238fded514/ijn-10-2191Fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b34/4370919/56757974b5e6/ijn-10-2191Fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b34/4370919/b753920076c6/ijn-10-2191Fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b34/4370919/50e2f9bf4b6f/ijn-10-2191Fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b34/4370919/8d7e0842e740/ijn-10-2191Fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b34/4370919/2678353831a6/ijn-10-2191Fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b34/4370919/c2b78ddd4959/ijn-10-2191Fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b34/4370919/647d91636af1/ijn-10-2191Fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b34/4370919/a0238fded514/ijn-10-2191Fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b34/4370919/56757974b5e6/ijn-10-2191Fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b34/4370919/b753920076c6/ijn-10-2191Fig8.jpg

相似文献

[1]
Parameters and characteristics governing cellular internalization and trans-barrier trafficking of nanostructures.

Int J Nanomedicine. 2015-3-18

[2]
Intracellular uptake, transport, and processing of gold nanostructures.

Mol Membr Biol. 2010-10

[3]
Promoting Inter-/Intra- Cellular Process of Nanomedicine through its Physicochemical Properties Optimization.

Curr Drug Metab. 2018

[4]
Cellular uptake mechanism and intracellular fate of hydrophobically modified glycol chitosan nanoparticles.

J Control Release. 2009-5-5

[5]
Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking.

Small. 2012-9-28

[6]
Exploiting endocytosis for nanomedicines.

Cold Spring Harb Perspect Biol. 2013-11-1

[7]
Controlling and Monitoring Intracellular Delivery of Anticancer Polymer Nanomedicines.

Macromol Biosci. 2017-4-26

[8]
Regulation of Cell Uptake and Cytotoxicity by Nanoparticle Core under the Controlled Shape, Size, and Surface Chemistries.

ACS Nano. 2019-12-26

[9]
Can dual-ligand targeting enhance cellular uptake of nanoparticles?

Nanoscale. 2017-7-6

[10]
Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine.

Adv Drug Deliv Rev. 2019-4-22

引用本文的文献

[1]
Formulation and Functional Characterization of a Cannabidiol-Loaded Nanoemulsion in Canine Mammary Carcinoma Cells.

Pharmaceutics. 2025-7-26

[2]
Perspectives on the pH-Influenced Design of Chitosan-Genipin Nanogels for Cell-Targeted Delivery.

Pharmaceutics. 2025-7-3

[3]
Histone modification changes upon exposure of human lung adenocarcinoma cells to nanoparticles.

Sci Rep. 2025-7-1

[4]
Silver Nanoparticles at Low Concentrations Embedded in ECM Promote Endothelial Monolayer Formation and Cell Migration.

Int J Mol Sci. 2025-5-16

[5]
Nose-to-Brain Delivery of Biomimetic Nanoparticles for Glioblastoma Targeted Therapy.

ACS Appl Mater Interfaces. 2025-1-8

[6]
Recent Advances in the Development and Utilization of Nanoparticles for the Management of Malignant Solid Tumors.

Cureus. 2024-9-27

[7]
Green synthesized silver nanoparticles, a sustainable approach for fruit and vegetable preservation: An overview.

Food Chem X. 2024-7-15

[8]
Near-Infrared Emissive Super Penetrating Conjugated Polymer Dots for Intratumoral Imaging in 3D Tumor Spheroid Models.

Adv Sci (Weinh). 2024-9

[9]
Unveiling Nanoparticles: Recent Approaches in Studying the Internalization Pattern of Iron Oxide Nanoparticles in Mono- and Multicellular Biological Structures.

J Funct Biomater. 2024-6-19

[10]
Environmental PM-triggered stress responses in digestive diseases.

eGastroenterology. 2024-4

本文引用的文献

[1]
Targeting nanoparticles across the blood-brain barrier with monoclonal antibodies.

Nanomedicine (Lond). 2014-4

[2]
Interfacial interactions between natural RBC membranes and synthetic polymeric nanoparticles.

Nanoscale. 2014-3-7

[3]
Surface modification of nonviral nanocarriers for enhanced gene delivery.

Nanomedicine (Lond). 2014-1

[4]
Mimicking cellular transport mechanism in stem cells through endosomal escape of new peptide-coated quantum dots.

Sci Rep. 2013

[5]
Providing the full picture: a mandate for standardizing nanoparticle-based drug delivery.

Nanomedicine (Lond). 2013-7

[6]
Cellular communication via nanoparticle-transporting biovesicles.

Nanomedicine (Lond). 2014-4

[7]
Cellular uptake and activity of heparin functionalised cerium oxide nanoparticles in monocytes.

Biomaterials. 2013-3-7

[8]
The transport pathways of polymer nanoparticles in MDCK epithelial cells.

Biomaterials. 2013-3-7

[9]
Efficient intracellular delivery of siRNA with a safe multitargeted lipid-based nanoplatform.

Nanomedicine (Lond). 2013-2-8

[10]
A fast analysis method to quantify nanoparticle uptake on a single cell level.

Nanomedicine (Lond). 2013-2-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索