Suppr超能文献

唾液腺的稳态通过腺泡细胞自我复制得以维持。

Salivary gland homeostasis is maintained through acinar cell self-duplication.

作者信息

Aure Marit H, Konieczny Stephen F, Ovitt Catherine E

机构信息

Center for Oral Biology, Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.

Department of Biological Sciences, Purdue Center for Cancer Research, Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, USA.

出版信息

Dev Cell. 2015 Apr 20;33(2):231-7. doi: 10.1016/j.devcel.2015.02.013. Epub 2015 Apr 2.

Abstract

Current dogma suggests that salivary gland homeostasis is stem cell dependent. However, the extent of stem cell contribution to salivary gland maintenance has not been determined. We investigated acinar cell replacement during homeostasis, growth, and regeneration, using an inducible CreER(T2) expressed under the control of the Mist1 gene locus. Genetic labeling, followed by a chase period, showed that acinar cell replacement is not driven by the differentiation of unlabeled stem cells. Analysis using R26(Brainbow2.1) reporter revealed continued proliferation and clonal expansion of terminally differentiated acinar cells in all major salivary glands. Induced injury also demonstrated the regenerative potential of pre-labeled acinar cells. Our results support a revised model for salivary gland homeostasis based predominantly on self-duplication of acinar cells, rather than on differentiation of stem cells. The proliferative capacity of differentiated acinar cells may prove critical in the implementation of cell-based strategies to restore the salivary glands.

摘要

目前的理论认为唾液腺的稳态依赖于干细胞。然而,干细胞对唾液腺维持的贡献程度尚未确定。我们使用在Mist1基因座控制下表达的诱导型CreER(T2),研究了稳态、生长和再生过程中腺泡细胞的替代情况。基因标记,随后经过一个追踪期,表明腺泡细胞的替代不是由未标记干细胞的分化驱动的。使用R26(Brainbow2.1)报告基因的分析显示,所有主要唾液腺中终末分化腺泡细胞持续增殖和克隆扩增。诱导损伤也证明了预先标记的腺泡细胞的再生潜力。我们的结果支持了一种修订后的唾液腺稳态模型,该模型主要基于腺泡细胞的自我复制,而不是干细胞的分化。分化腺泡细胞的增殖能力可能在实施基于细胞的唾液腺恢复策略中至关重要。

相似文献

1
Salivary gland homeostasis is maintained through acinar cell self-duplication.
Dev Cell. 2015 Apr 20;33(2):231-7. doi: 10.1016/j.devcel.2015.02.013. Epub 2015 Apr 2.
2
Salivary Glands: Stem Cells, Self-duplication, or Both?
J Dent Res. 2015 Nov;94(11):1502-7. doi: 10.1177/0022034515599770. Epub 2015 Aug 18.
3
Cell-Specific Cre Strains For Genetic Manipulation in Salivary Glands.
PLoS One. 2016 Jan 11;11(1):e0146711. doi: 10.1371/journal.pone.0146711. eCollection 2016.
4
Primary Salivary Human Stem/Progenitor Cells Undergo Microenvironment-Driven Acinar-Like Differentiation in Hyaluronate Hydrogel Culture.
Stem Cells Transl Med. 2017 Jan;6(1):110-120. doi: 10.5966/sctm.2016-0083. Epub 2016 Aug 18.
6
Intrinsic mitotic activity supports the human salivary gland acinar cell population.
FEBS Lett. 2020 Jan;594(2):376-382. doi: 10.1002/1873-3468.13611. Epub 2019 Oct 2.
7
[Self-duplication of differentiated acinar cells during salivary gland growth and regeneration].
Med Sci (Paris). 2015 Aug-Sep;31(8-9):712-4. doi: 10.1051/medsci/20153108003. Epub 2015 Sep 4.
8
Ascl3 knockout and cell ablation models reveal complexity of salivary gland maintenance and regeneration.
Dev Biol. 2011 May 15;353(2):186-93. doi: 10.1016/j.ydbio.2011.02.025. Epub 2011 Mar 4.
9
Salivary gland cell aggregates are derived from self-organization of acinar lineage cells.
Arch Oral Biol. 2019 Jan;97:122-130. doi: 10.1016/j.archoralbio.2018.10.017. Epub 2018 Oct 22.

引用本文的文献

2
Stem/progenitor cell dynamics during salivary gland development and regeneration demonstrated by the double pulse-chase paradigm.
Regen Ther. 2025 Aug 13;30:595-605. doi: 10.1016/j.reth.2025.08.007. eCollection 2025 Dec.
4
Regional atrophy, cellular plasticity, and regenerative potential in irradiated murine salivary glands.
Acta Oncol. 2025 Jul 23;64:927-938. doi: 10.2340/1651-226X.2025.44012.
5
An FGFR-p53 developmental signaling axis drives salivary cancer progression.
Oncogene. 2025 Jun 2. doi: 10.1038/s41388-025-03444-7.
6
Saliva-derived extracellular vesicles: a promising therapeutic approach for salivary gland fibrosis.
J Transl Med. 2025 May 27;23(1):593. doi: 10.1186/s12967-025-06620-1.
9
Salivary gland stem/progenitor cells: advancing from basic science to clinical applications.
Cell Regen. 2025 Jan 24;14(1):4. doi: 10.1186/s13619-025-00221-5.
10
A morphological post mortem profile in minor salivary glands changes in females.
J Mol Histol. 2024 Dec 6;56(1):32. doi: 10.1007/s10735-024-10306-1.

本文引用的文献

1
Adult hepatocytes are generated by self-duplication rather than stem cell differentiation.
Cell Stem Cell. 2014 Sep 4;15(3):340-349. doi: 10.1016/j.stem.2014.06.003. Epub 2014 Aug 14.
2
Combined KIT and FGFR2b signaling regulates epithelial progenitor expansion during organogenesis.
Stem Cell Reports. 2013 Dec 12;1(6):604-19. doi: 10.1016/j.stemcr.2013.10.013. eCollection 2013.
4
5
Sox2(+) adult stem and progenitor cells are important for tissue regeneration and survival of mice.
Cell Stem Cell. 2011 Oct 4;9(4):317-29. doi: 10.1016/j.stem.2011.09.001.
6
Clinical management of salivary gland hypofunction and xerostomia in head-and-neck cancer patients: successes and barriers.
Int J Radiat Oncol Biol Phys. 2010 Nov 15;78(4):983-91. doi: 10.1016/j.ijrobp.2010.06.052.
7
Parasympathetic innervation maintains epithelial progenitor cells during salivary organogenesis.
Science. 2010 Sep 24;329(5999):1645-7. doi: 10.1126/science.1192046.
8
Epithelial stem/progenitor cells in the embryonic mouse submandibular gland.
Front Oral Biol. 2010;14:90-106. doi: 10.1159/000313709. Epub 2010 Apr 20.
9
Bmi1 lineage tracing identifies a self-renewing pancreatic acinar cell subpopulation capable of maintaining pancreatic organ homeostasis.
Proc Natl Acad Sci U S A. 2009 Apr 28;106(17):7101-6. doi: 10.1073/pnas.0902508106. Epub 2009 Apr 16.
10
Loss of the acinar-restricted transcription factor Mist1 accelerates Kras-induced pancreatic intraepithelial neoplasia.
Gastroenterology. 2009 Apr;136(4):1368-78. doi: 10.1053/j.gastro.2008.12.066. Epub 2009 Jan 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验