Levefaudes Marjorie, Patin Delphine, de Sousa-d'Auria Célia, Chami Mohamed, Blanot Didier, Hervé Mireille, Arthur Michel, Houssin Christine, Mengin-Lecreulx Dominique
From the Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, F-91198 Gif-sur-Yvette, France.
the Center for Cellular Imaging and NanoAnalytics (C-CINA), Biozentrum, University of Basel, CH-4058 Basel, Switzerland.
J Biol Chem. 2015 May 22;290(21):13079-94. doi: 10.1074/jbc.M115.642843. Epub 2015 Apr 6.
A gene named ltsA was earlier identified in Rhodococcus and Corynebacterium species while screening for mutations leading to increased cell susceptibility to lysozyme. The encoded protein belonged to a huge family of glutamine amidotransferases whose members catalyze amide nitrogen transfer from glutamine to various specific acceptor substrates. We here describe detailed physiological and biochemical investigations demonstrating the specific role of LtsA protein from Corynebacterium glutamicum (LtsACg) in the modification by amidation of cell wall peptidoglycan diaminopimelic acid (DAP) residues. A morphologically altered but viable ΔltsA mutant was generated, which displays a high susceptibility to lysozyme and β-lactam antibiotics. Analysis of its peptidoglycan structure revealed a total loss of DAP amidation, a modification that was found in 80% of DAP residues in the wild-type polymer. The cell peptidoglycan content and cross-linking were otherwise not modified in the mutant. Heterologous expression of LtsACg in Escherichia coli yielded a massive and toxic incorporation of amidated DAP into the peptidoglycan that ultimately led to cell lysis. In vitro assays confirmed the amidotransferase activity of LtsACg and showed that this enzyme used the peptidoglycan lipid intermediates I and II but not, or only marginally, the UDP-MurNAc pentapeptide nucleotide precursor as acceptor substrates. As is generally the case for glutamine amidotransferases, either glutamine or NH4(+) could serve as the donor substrate for LtsACg. The enzyme did not amidate tripeptide- and tetrapeptide-truncated versions of lipid I, indicating a strict specificity for a pentapeptide chain length.
在筛选导致细胞对溶菌酶敏感性增加的突变时,早期在红球菌属和棒状杆菌属物种中鉴定出一个名为ltsA的基因。编码的蛋白质属于一个庞大的谷氨酰胺酰胺转移酶家族,其成员催化酰胺氮从谷氨酰胺转移到各种特定的受体底物上。我们在此描述了详细的生理和生化研究,证明了谷氨酸棒杆菌的LtsA蛋白(LtsACg)在细胞壁肽聚糖二氨基庚二酸(DAP)残基酰胺化修饰中的特定作用。产生了一个形态改变但仍存活的ΔltsA突变体,该突变体对溶菌酶和β-内酰胺抗生素高度敏感。对其肽聚糖结构的分析表明,DAP酰胺化完全丧失,而在野生型聚合物中,80%的DAP残基存在这种修饰。该突变体的细胞肽聚糖含量和交联在其他方面未发生改变。LtsACg在大肠杆菌中的异源表达导致大量酰胺化DAP有毒性地掺入肽聚糖中,最终导致细胞裂解。体外试验证实了LtsACg的酰胺转移酶活性,并表明该酶使用肽聚糖脂质中间体I和II作为受体底物,但不使用UDP-MurNAc五肽核苷酸前体,或仅少量使用。与谷氨酰胺酰胺转移酶的一般情况一样,谷氨酰胺或NH4(+)均可作为LtsACg的供体底物。该酶不会对脂质I的三肽和四肽截短版本进行酰胺化,表明对五肽链长度具有严格的特异性。