Gouttefangeas Cécile, Chan Cliburn, Attig Sebastian, Køllgaard Tania T, Rammensee Hans-Georg, Stevanović Stefan, Wernet Dorothee, thor Straten Per, Welters Marij J P, Ottensmeier Christian, van der Burg Sjoerd H, Britten Cedrik M
Department of Immunology, Institute for Cell Biology, Eberhard Karls University, Auf der Morgenstelle 15, 72076, Tübingen, Germany,
Cancer Immunol Immunother. 2015 May;64(5):585-98. doi: 10.1007/s00262-014-1649-1. Epub 2015 Feb 18.
Multiparameter flow cytometry is an indispensable method for assessing antigen-specific T cells in basic research and cancer immunotherapy. Proficiency panels have shown that cell sample processing, test protocols and data analysis may all contribute to the variability of the results obtained by laboratories performing ex vivo T cell immune monitoring. In particular, analysis currently relies on a manual, step-by-step strategy employing serial gating decisions based on visual inspection of one- or two-dimensional plots. It is therefore operator dependent and subjective. In the context of continuing efforts to support inter-laboratory T cell assay harmonization, the CIMT Immunoguiding Program organized its third proficiency panel dedicated to the detection of antigen-specific CD8(+) T cells by HLA-peptide multimer staining. We first assessed the contribution of manual data analysis to the variability of reported T cell frequencies within a group of laboratories staining and analyzing the same cell samples with their own reagents and protocols. The results show that data analysis is a source of variation in the multimer assay outcome. To evaluate whether an automated analysis approach can reduce variability of proficiency panel data, we used a hierarchical statistical mixture model to identify cell clusters. Challenges for automated analysis were the need to process non-standardized data sets from multiple centers, and the fact that the antigen-specific cell frequencies were very low in most samples. We show that this automated method can circumvent difficulties inherent to manual gating strategies and is broadly applicable for experiments performed with heterogeneous protocols and reagents.
多参数流式细胞术是基础研究和癌症免疫治疗中评估抗原特异性T细胞的不可或缺的方法。能力验证小组表明,细胞样本处理、检测方案和数据分析都可能导致进行体外T细胞免疫监测的实验室所获得结果的变异性。特别是,目前的分析依赖于一种手动的、逐步的策略,该策略基于对一维或二维图的目视检查进行系列门控决策。因此,它依赖于操作人员且具有主观性。在持续努力支持实验室间T细胞检测方法协调统一的背景下,CIMT免疫指导计划组织了第三次能力验证小组,专门致力于通过HLA-肽多聚体染色检测抗原特异性CD8(+) T细胞。我们首先评估了手动数据分析对一组实验室使用各自试剂和方案对相同细胞样本进行染色和分析时报告的T细胞频率变异性的影响。结果表明,数据分析是多聚体检测结果变异性的一个来源。为了评估自动化分析方法是否可以降低能力验证小组数据的变异性,我们使用分层统计混合模型来识别细胞簇。自动化分析面临的挑战包括需要处理来自多个中心的非标准化数据集,以及大多数样本中抗原特异性细胞频率非常低这一事实。我们表明,这种自动化方法可以规避手动门控策略固有的困难,并且广泛适用于使用异质方案和试剂进行的实验。