Suppr超能文献

基于细胞的筛选:从复杂数据中提取意义。

Cell-based screening: extracting meaning from complex data.

作者信息

Finkbeiner Steven, Frumkin Michael, Kassner Paul D

机构信息

Director of the Taube/Koret Center for Neurodegenerative Disease and the Hellman Family Foundation Program in Alzheimer's Disease Research, Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA; Departments of Neurology and Physiology, University of California, San Francisco, San Francisco, CA 94143, USA.

Director of Engineering, Research, Google, Inc., 1600 Amphitheatre Parkway, Mountain View, CA 94043, USA.

出版信息

Neuron. 2015 Apr 8;86(1):160-74. doi: 10.1016/j.neuron.2015.02.023.

Abstract

Unbiased discovery approaches have the potential to uncover neurobiological insights into CNS disease and lead to the development of therapies. Here, we review lessons learned from imaging-based screening approaches and recent advances in these areas, including powerful new computational tools to synthesize complex data into more useful knowledge that can reliably guide future research and development.

摘要

无偏发现方法有潜力揭示中枢神经系统疾病的神经生物学见解,并推动治疗方法的开发。在此,我们回顾从基于成像的筛选方法中获得的经验教训以及这些领域的最新进展,包括强大的新计算工具,可将复杂数据综合为更有用的知识,从而可靠地指导未来的研究与开发。

相似文献

3
Modeling neurodevelopmental disorders using human neurons.使用人类神经元对神经发育障碍进行建模。
Curr Opin Neurobiol. 2012 Oct;22(5):785-90. doi: 10.1016/j.conb.2012.04.004. Epub 2012 Jun 19.

引用本文的文献

5
Machine learning-enabled multiplexed microfluidic sensors.基于机器学习的多重微流控传感器。
Biomicrofluidics. 2020 Dec 11;14(6):061506. doi: 10.1063/5.0025462. eCollection 2020 Nov.
8
Cell death assays for neurodegenerative disease drug discovery.用于神经退行性疾病药物发现的细胞死亡分析。
Expert Opin Drug Discov. 2019 Sep;14(9):901-913. doi: 10.1080/17460441.2019.1623784. Epub 2019 Jun 10.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验