Bresson Justine, Vasseur François, Dauzat Myriam, Koch Garance, Granier Christine, Vile Denis
Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE), INRA, Montpellier SupAgro, UMR759, F-34060 Montpellier, France.
Laboratoire des Symbioses Tropicales et Méditerranéennes (LSTM), UMR113, Université Montpellier 2-IRD-CIRAD-INRA-SupAgro, F-34095 Montpellier, France.
Plant Methods. 2015 Mar 26;11:23. doi: 10.1186/s13007-015-0067-5. eCollection 2015.
Effects of abiotic and biotic stresses on plant photosynthetic performance lead to fitness and yield decrease. The maximum quantum efficiency of photosystem II (F v/F m) is a parameter of chlorophyll fluorescence (ChlF) classically used to track changes in photosynthetic performance. Despite recent technical and methodological advances in ChlF imaging, the spatio-temporal heterogeneity of F v/F m still awaits for standardized and accurate quantification.
We developed a method to quantify the dynamics of spatial heterogeneity of photosynthetic efficiency through the distribution-based analysis of F v/F m values. The method was applied to Arabidopsis thaliana grown under well-watered and severe water deficit (survival rate of 40%). First, whole-plant F v/F m shifted from unimodal to bimodal distributions during plant development despite a constant mean F v/F m under well-watered conditions. The establishment of a bimodal distribution of F v/F m reflects the occurrence of two types of leaf regions with contrasted photosynthetic efficiency. The distance between the two modes (called S) quantified the whole-plant photosynthetic heterogeneity. The weighted contribution of the most efficient/healthiest leaf regions to whole-plant performance (called W max) quantified the spatial efficiency of a photosynthetically heterogeneous plant. Plant survival to water deficit was associated to high S values, as well as with strong and fast recovery of W max following soil rewatering. Hence, during stress surviving plants had higher, but more efficient photosynthetic heterogeneity compared to perishing plants. Importantly, S allowed the discrimination between surviving and perishing plants four days earlier than the mean F v/F m. A sensitivity analysis from simulated dynamics of F v/F m showed that parameters indicative of plant tolerance and/or stress intensity caused identifiable changes in S and W max. Finally, an independent comparison of six Arabidopsis accessions grown under well-watered conditions indicated that S and W max are related to the genetic variability of growth.
The distribution-based analysis of ChlF provides an efficient tool for quantifying photosynthetic heterogeneity and performance. S and W max are good indicators to estimate plant survival under water stress. Our results suggest that the dynamics of photosynthetic heterogeneity are key components of plant growth and tolerance to stress.
非生物和生物胁迫对植物光合性能的影响会导致适应性和产量下降。光系统II的最大量子效率(F v/F m)是叶绿素荧光(ChlF)的一个参数,传统上用于追踪光合性能的变化。尽管近年来ChlF成像技术和方法取得了进展,但F v/F m的时空异质性仍有待标准化和准确量化。
我们开发了一种通过基于分布的F v/F m值分析来量化光合效率空间异质性动态的方法。该方法应用于在水分充足和严重水分亏缺(存活率40%)条件下生长的拟南芥。首先,尽管在水分充足条件下平均F v/F m保持恒定,但在植物发育过程中,全株F v/F m从单峰分布转变为双峰分布。F v/F m双峰分布的建立反映了具有不同光合效率的两种叶片区域的出现。两种模式之间的距离(称为S)量化了全株光合异质性。最有效/最健康叶片区域对全株性能的加权贡献(称为W max)量化了光合异质植物的空间效率。植物对水分亏缺的存活与高S值以及土壤再浇水后W max的强烈快速恢复有关。因此,在胁迫期间,存活植物比死亡植物具有更高但更有效的光合异质性。重要的是,S比平均F v/F m提前四天就能区分存活植物和死亡植物。对F v/F m模拟动态的敏感性分析表明,指示植物耐受性和/或胁迫强度的参数会导致S和W max发生可识别的变化。最后,对在水分充足条件下生长的六个拟南芥生态型的独立比较表明,S和W max与生长的遗传变异性有关。
基于分布的ChlF分析为量化光合异质性和性能提供了一种有效工具。S和W max是估计水分胁迫下植物存活的良好指标。我们的结果表明,光合异质性动态是植物生长和胁迫耐受性的关键组成部分。