Suppr超能文献

在等长运动和自主运动期间,皮质和脊髓向膝关节伸肌投射的兴奋性随强度的变化。

Intensity-dependent alterations in the excitability of cortical and spinal projections to the knee extensors during isometric and locomotor exercise.

作者信息

Weavil J C, Sidhu S K, Mangum T S, Richardson R S, Amann M

机构信息

Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah;

Department of Internal Medicine, University of Utah, Salt Lake City, Utah;

出版信息

Am J Physiol Regul Integr Comp Physiol. 2015 Jun 15;308(12):R998-1007. doi: 10.1152/ajpregu.00021.2015. Epub 2015 Apr 15.

Abstract

We investigated the role of exercise intensity and associated central motor drive in determining corticomotoneuronal excitability. Ten participants performed a series of nonfatiguing (3 s) isometric single-leg knee extensions (ISO; 10-100% of maximal voluntary contractions, MVC) and cycling bouts (30-160% peak aerobic capacity, W peak). At various exercise intensities, electrical potentials were evoked in the vastus lateralis (VL) and rectus femoris (RF) via transcranial magnetic stimulation (motor-evoked potentials, MEP), and electrical stimulation of both the cervicomedullary junction (cervicomedullary evoked potentials, CMEP) and the femoral nerve (maximal M-waves, M max). Whereas M max remained unchanged in both muscles (P > 0.40), voluntary electromyographic activity (EMG) increased in an exercise intensity-dependent manner for ISO and cycling exercise in VL and RF (both P < 0.001). During ISO exercise, MEPs and CMEPs progressively increased in VL and RF until a plateau was reached at ∼ 75% MVC; further increases in contraction intensity did not cause additional changes (P > 0.35). During cycling exercise, VL-MEPs and CMEPs progressively increased by ∼ 65% until a plateau was reached at W peak. In contrast, RF MEPs and CMEPs progressively increased by ∼ 110% throughout the tested cycling intensities without the occurrence of a plateau. Furthermore, alterations in EMG below the plateau influenced corticomotoneuronal excitability similarly between exercise modalities. In both exercise modalities, the MEP-to-CMEP ratio did not change with exercise intensity (P > 0.22). In conclusion, increases in exercise intensity and EMG facilitates the corticomotoneuronal pathway similarly in isometric knee extension and locomotor exercise until a plateau occurs at a submaximal exercise intensity. This facilitation appears to be primarily mediated by increases in excitability of the motoneuron pool.

摘要

我们研究了运动强度及相关中枢运动驱动在决定皮质脊髓运动神经元兴奋性方面的作用。10名参与者进行了一系列非疲劳性(3秒)的等长单腿膝关节伸展运动(ISO;最大自主收缩的10 - 100%,MVC)和骑行运动(峰值有氧能力的30 - 160%,W峰值)。在不同运动强度下,通过经颅磁刺激在股外侧肌(VL)和股直肌(RF)诱发电位(运动诱发电位,MEP),并对颈髓交界处进行电刺激(颈髓诱发电位,CMEP)以及对股神经进行电刺激(最大M波,M max)。虽然两块肌肉的M max均保持不变(P > 0.40),但在VL和RF中,等长运动和骑行运动的自主肌电图活动(EMG)均以运动强度依赖的方式增加(均为P < 0.001)。在等长运动期间,VL和RF中的MEP和CMEP逐渐增加,直到在约75%MVC时达到平台期;收缩强度进一步增加未引起额外变化(P > 0.35)。在骑行运动期间,VL - MEP和CMEP逐渐增加约65%,直到在W峰值时达到平台期。相比之下,在整个测试的骑行强度范围内,RF的MEP和CMEP逐渐增加约110%,未出现平台期。此外,在平台期以下,EMG的变化在不同运动方式之间对皮质脊髓运动神经元兴奋性的影响相似。在两种运动方式中,MEP与CMEP的比值均不随运动强度而变化(P > 0.22)。总之,在等长膝关节伸展运动和移动运动中,运动强度和EMG的增加以相似的方式促进皮质脊髓运动神经元通路,直到在次最大运动强度时达到平台期。这种促进作用似乎主要由运动神经元池兴奋性的增加介导。

相似文献

1
Intensity-dependent alterations in the excitability of cortical and spinal projections to the knee extensors during isometric and locomotor exercise.
Am J Physiol Regul Integr Comp Physiol. 2015 Jun 15;308(12):R998-1007. doi: 10.1152/ajpregu.00021.2015. Epub 2015 Apr 15.
2
Fatigue diminishes motoneuronal excitability during cycling exercise.
J Neurophysiol. 2016 Oct 1;116(4):1743-1751. doi: 10.1152/jn.00300.2016. Epub 2016 Jul 20.
3
Reductions in motoneuron excitability during sustained isometric contractions are dependent on stimulus and contraction intensity.
J Neurophysiol. 2021 May 1;125(5):1636-1646. doi: 10.1152/jn.00070.2021. Epub 2021 Mar 31.
5
Motor cortex excitability does not increase during sustained cycling exercise to volitional exhaustion.
J Appl Physiol (1985). 2012 Aug;113(3):401-9. doi: 10.1152/japplphysiol.00486.2012. Epub 2012 Jun 7.
6
Sustained Maximal Voluntary Contractions Elicit Different Neurophysiological Responses in Upper- and Lower-Limb Muscles in Men.
Neuroscience. 2019 Dec 1;422:88-98. doi: 10.1016/j.neuroscience.2019.09.029. Epub 2019 Nov 1.
8
Contraction intensity-dependent variations in the responses to brain and corticospinal tract stimulation after a single session of resistance training in men.
J Appl Physiol (1985). 2019 Oct 1;127(4):1128-1139. doi: 10.1152/japplphysiol.01106.2018. Epub 2019 Aug 22.
9
Effects of fatigue on corticospinal excitability of the human knee extensors.
Exp Physiol. 2016 Dec 1;101(12):1552-1564. doi: 10.1113/EP085753. Epub 2016 Oct 31.
10
Increases in corticospinal responsiveness during a sustained submaximal plantar flexion.
J Appl Physiol (1985). 2009 Jul;107(1):112-20. doi: 10.1152/japplphysiol.91541.2008. Epub 2009 May 14.

引用本文的文献

2
Gait and Neuromuscular Changes Are Evident in Some Masters Club Level Runners 24-h After Interval Training Run.
Front Sports Act Living. 2022 Jun 2;4:830278. doi: 10.3389/fspor.2022.830278. eCollection 2022.
3
Corticospinal Excitability Is Lower During Eccentric Than Concentric Cycling in Men.
Front Physiol. 2022 Mar 16;13:854824. doi: 10.3389/fphys.2022.854824. eCollection 2022.
4
A Subject-Tailored Variability-Based Platform for Overcoming the Plateau Effect in Sports Training: A Narrative Review.
Int J Environ Res Public Health. 2022 Feb 2;19(3):1722. doi: 10.3390/ijerph19031722.
5
Motor cortex plasticity and visuomotor skill learning in upper and lower limbs of endurance-trained cyclists.
Eur J Appl Physiol. 2022 Jan;122(1):169-184. doi: 10.1007/s00421-021-04825-y. Epub 2021 Oct 7.
6
Tongue Strength Training Increases Daytime Upper Airway Stability in Rats.
Nat Sci Sleep. 2021 Sep 22;13:1653-1661. doi: 10.2147/NSS.S328214. eCollection 2021.
7
Corticomotor excitability of gluteus maximus and hip extensor strength: The influence of sex.
Hum Mov Sci. 2021 Aug;78:102830. doi: 10.1016/j.humov.2021.102830. Epub 2021 Jun 12.
8
Heart failure with preserved ejection fraction diminishes peripheral hemodynamics and accelerates exercise-induced neuromuscular fatigue.
Am J Physiol Heart Circ Physiol. 2021 Jan 1;320(1):H338-H351. doi: 10.1152/ajpheart.00266.2020. Epub 2020 Nov 8.
9
Ascorbate attenuates cycling exercise-induced neuromuscular fatigue but fails to improve exertional dyspnea and exercise tolerance in COPD.
J Appl Physiol (1985). 2021 Jan 1;130(1):69-79. doi: 10.1152/japplphysiol.00611.2020. Epub 2020 Nov 5.
10
On the Influence of Group III/IV Muscle Afferent Feedback on Endurance Exercise Performance.
Exerc Sport Sci Rev. 2020 Oct;48(4):209-216. doi: 10.1249/JES.0000000000000233.

本文引用的文献

2
Motor cortex excitability does not increase during sustained cycling exercise to volitional exhaustion.
J Appl Physiol (1985). 2012 Aug;113(3):401-9. doi: 10.1152/japplphysiol.00486.2012. Epub 2012 Jun 7.
3
Adjustment of muscle coordination during an all-out sprint cycling task.
Med Sci Sports Exerc. 2012 Nov;44(11):2154-64. doi: 10.1249/MSS.0b013e3182625423.
4
Corticospinal contributions to lower limb muscle activity during cycling in humans.
J Neurophysiol. 2012 Jan;107(1):306-14. doi: 10.1152/jn.00212.2011. Epub 2011 Oct 19.
5
Implications of group III and IV muscle afferents for high-intensity endurance exercise performance in humans.
J Physiol. 2011 Nov 1;589(Pt 21):5299-309. doi: 10.1113/jphysiol.2011.213769. Epub 2011 Aug 30.
6
Joint-specific power production during submaximal and maximal cycling.
Med Sci Sports Exerc. 2011 Oct;43(10):1940-7. doi: 10.1249/MSS.0b013e31821b00c5.
7
Voluntary activation of human knee extensors measured using transcranial magnetic stimulation.
Exp Physiol. 2009 Sep;94(9):995-1004. doi: 10.1113/expphysiol.2009.047902. Epub 2009 Jun 26.
9
Corticospinal-evoked responses in lower limb muscles during voluntary contractions at varying strengths.
J Appl Physiol (1985). 2008 Nov;105(5):1527-32. doi: 10.1152/japplphysiol.90586.2008. Epub 2008 Sep 11.
10
Noninvasive stimulation of human corticospinal axons innervating leg muscles.
J Neurophysiol. 2008 Aug;100(2):1080-6. doi: 10.1152/jn.90380.2008. Epub 2008 May 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验