Suppr超能文献

使用多相催化剂的 (R)-和 (S)-罗利普兰的多步连续流合成。

Multistep continuous-flow synthesis of (R)- and (S)-rolipram using heterogeneous catalysts.

机构信息

Department of Chemistry and Green &Sustainable Chemistry Social Cooperation Laboratory, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.

出版信息

Nature. 2015 Apr 16;520(7547):329-32. doi: 10.1038/nature14343.

Abstract

Chemical manufacturing is conducted using either batch systems or continuous-flow systems. Flow systems have several advantages over batch systems, particularly in terms of productivity, heat and mixing efficiency, safety, and reproducibility. However, for over half a century, pharmaceutical manufacturing has used batch systems because the synthesis of complex molecules such as drugs has been difficult to achieve with continuous-flow systems. Here we describe the continuous-flow synthesis of drugs using only columns packed with heterogeneous catalysts. Commercially available starting materials were successively passed through four columns containing achiral and chiral heterogeneous catalysts to produce (R)-rolipram, an anti-inflammatory drug and one of the family of γ-aminobutyric acid (GABA) derivatives. In addition, simply by replacing a column packed with a chiral heterogeneous catalyst with another column packed with the opposing enantiomer, we obtained antipole (S)-rolipram. Similarly, we also synthesized (R)-phenibut, another drug belonging to the GABA family. These flow systems are simple and stable with no leaching of metal catalysts. Our results demonstrate that multistep (eight steps in this case) chemical transformations for drug synthesis can proceed smoothly under flow conditions using only heterogeneous catalysts, without the isolation of any intermediates and without the separation of any catalysts, co-products, by-products, and excess reagents. We anticipate that such syntheses will be useful in pharmaceutical manufacturing.

摘要

化学制造采用间歇式系统或连续流动系统进行。与间歇式系统相比,流动系统具有多个优势,特别是在生产力、热效率、混合效率、安全性和重现性方面。然而,半个多世纪以来,制药行业一直使用间歇式系统,因为复杂分子(如药物)的合成很难通过连续流动系统来实现。在这里,我们仅使用填充有非均相催化剂的柱来描述药物的连续流动合成。将商业上可获得的起始材料连续通过四个含有非手性和手性非均相催化剂的柱,以合成(R)-罗利普兰,一种抗炎药,也是γ-氨基丁酸(GABA)衍生物家族的一员。此外,只需用填充有对映体非均相催化剂的柱替换填充有手性非均相催化剂的柱,就可以得到反式(S)-罗利普兰。同样,我们还合成了另一种属于 GABA 家族的药物(R)-苯并戊烯。这些流动系统简单稳定,金属催化剂没有浸出。我们的结果表明,多步(本例中为 8 步)药物合成的化学反应可以在仅使用非均相催化剂的流动条件下顺利进行,无需分离任何中间体,也无需分离任何催化剂、副产物、副产物和过量试剂。我们预计这种合成将在制药生产中具有重要作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验