Glotov Andrey S, Tiys Evgeny S, Vashukova Elena S, Pakin Vladimir S, Demenkov Pavel S, Saik Olga V, Ivanisenko Timofey V, Arzhanova Olga N, Mozgovaya Elena V, Zainulina Marina S, Kolchanov Nikolay A, Baranov Vladislav S, Ivanisenko Vladimir A
BMC Syst Biol. 2015;9 Suppl 2(Suppl 2):S4. doi: 10.1186/1752-0509-9-S2-S4. Epub 2015 Apr 15.
Pre-eclampsia is the most common complication occurring during pregnancy. In the majority of cases, it is concurrent with other pathologies in a comorbid manner (frequent co-occurrences in patients), such as diabetes mellitus, gestational diabetes and obesity. Providing bronchial asthma, pulmonary tuberculosis, certain neurodegenerative diseases and cancers as examples, we have shown previously that pairs of inversely comorbid pathologies (rare co-occurrences in patients) are more closely related to each other at the molecular genetic level compared with randomly generated pairs of diseases. Data in the literature concerning the causes of pre-eclampsia are abundant. However, the key mechanisms triggering this disease that are initiated by other pathological processes are thus far unknown. The aim of this work was to analyse the characteristic features of genetic networks that describe interactions between comorbid diseases, using pre-eclampsia as a case in point.
The use of ANDSystem, Pathway Studio and STRING computer tools based on text-mining and database-mining approaches allowed us to reconstruct associative networks, representing molecular genetic interactions between genes, associated concurrently with comorbid disease pairs, including pre-eclampsia, diabetes mellitus, gestational diabetes and obesity. It was found that these associative networks statistically differed in the number of genes and interactions between them from those built for randomly chosen pairs of diseases. The associative network connecting all four diseases was composed of 16 genes (PLAT, ADIPOQ, ADRB3, LEPR, HP, TGFB1, TNFA, INS, CRP, CSRP1, IGFBP1, MBL2, ACE, ESR1, SHBG, ADA). Such an analysis allowed us to reveal differential gene risk factors for these diseases, and to propose certain, most probable, theoretical mechanisms of pre-eclampsia development in pregnant women. The mechanisms may include the following pathways: [TGFB1 or TNFA]-[IL1B]-[pre-eclampsia]; [TNFA or INS]-[NOS3]-[pre-eclampsia]; [INS]-[HSPA4 or CLU]-[pre-eclampsia]; [ACE]-[MTHFR]-[pre-eclampsia].
For pre-eclampsia, diabetes mellitus, gestational diabetes and obesity, we showed that the size and connectivity of the associative molecular genetic networks, which describe interactions between comorbid diseases, statistically exceeded the size and connectivity of those built for randomly chosen pairs of diseases. Recently, we have shown a similar result for inversely comorbid diseases. This suggests that comorbid and inversely comorbid diseases have common features concerning structural organization of associative molecular genetic networks.
子痫前期是孕期最常见的并发症。在大多数情况下,它与其他病理状况以共病的方式并发(患者中频繁同时出现),如糖尿病、妊娠期糖尿病和肥胖症。以支气管哮喘、肺结核、某些神经退行性疾病和癌症为例,我们之前已经表明,与随机生成的疾病对相比,反向共病病理状况对(患者中罕见同时出现)在分子遗传水平上彼此之间的关系更为密切。文献中关于子痫前期病因的数据丰富。然而,由其他病理过程引发该疾病的关键机制迄今尚不清楚。这项工作的目的是以子痫前期为例,分析描述共病疾病之间相互作用的遗传网络的特征。
使用基于文本挖掘和数据库挖掘方法的ANDSystem、Pathway Studio和STRING计算机工具,使我们能够重建关联网络,该网络代表了与包括子痫前期、糖尿病、妊娠期糖尿病和肥胖症在内的共病疾病对同时相关的基因之间的分子遗传相互作用。结果发现,这些关联网络在基因数量及其之间的相互作用方面,与为随机选择的疾病对构建的网络在统计学上存在差异。连接所有四种疾病的关联网络由16个基因组成(组织型纤溶酶原激活物、脂联素、β3肾上腺素能受体、瘦素受体、触珠蛋白、转化生长因子β1、肿瘤坏死因子α、胰岛素、C反应蛋白、富含半胱氨酸的分泌蛋白1、胰岛素样生长因子结合蛋白1、甘露糖结合凝集素2、血管紧张素转换酶、雌激素受体1、性激素结合球蛋白、腺苷脱氨酶)。这样的分析使我们能够揭示这些疾病的差异基因风险因素,并提出孕妇子痫前期发展的某些最可能的理论机制。这些机制可能包括以下途径:[转化生长因子β1或肿瘤坏死因子α]-[白细胞介素1β]-[子痫前期];[肿瘤坏死因子α或胰岛素]-[一氧化氮合酶3]-[子痫前期];[胰岛素]-[热休克蛋白A4或集群蛋白]-[子痫前期];[血管紧张素转换酶]-[亚甲基四氢叶酸还原酶]-[子痫前期]。
对于子痫前期、糖尿病、妊娠期糖尿病和肥胖症,我们表明,描述共病疾病之间相互作用的关联分子遗传网络的规模和连通性在统计学上超过了为随机选择的疾病对构建的网络的规模和连通性。最近,我们对反向共病疾病也得出了类似结果。这表明共病和反向共病疾病在关联分子遗传网络的结构组织方面具有共同特征。