Suppr超能文献

现代疫苗学中的新挑战。

New challenges in modern vaccinology.

作者信息

Centlivre Mireille, Combadière Béhazine

机构信息

Sorbonne Universités, UPMC University Paris 06, UMR_S CR7, Centre d'Immunologie et des Maladies Infectieuses- Paris, F-75013, Paris, France.

Centre d'Immunologie et des Maladies Infectieuses CIMI-Paris, 91 Boulevard de l'Hôpital, 75013, Paris, France.

出版信息

BMC Immunol. 2015 Mar 26;16:18. doi: 10.1186/s12865-015-0075-2.

Abstract

Vaccination has been a major advance for health care, allowing eradication or reduction of incidence and mortality of various infectious diseases. However, there are major pathogens, such as Human Immunodeficiency Virus (HIV) or the causative agent of malaria, for which classical vaccination approaches have failed, therefore requiring new vaccination strategies. The development of new vaccine strategies relies on the ability to identify the challenges posed by these pathogens. Understanding the pathogenesis and correlates of protection for these diseases, our ability to accurately direct immune responses and to vaccinate specific populations are such examples of these roadblocks. In this respect, the use of a robust, cost-effective and predictive animal model that recapitulates features of both human infection and vaccination is currently a much-needed tool. We discuss here the major limitations faced by modern vaccinology and notably, the development of humanized mice for assessing the immune system, along with their potential as vaccine models.

摘要

疫苗接种是医疗保健领域的一项重大进展,使各种传染病得以根除或发病率和死亡率降低。然而,存在一些主要病原体,如人类免疫缺陷病毒(HIV)或疟疾病原体,传统的疫苗接种方法对它们并不奏效,因此需要新的疫苗策略。新疫苗策略的开发依赖于识别这些病原体所带来挑战的能力。了解这些疾病的发病机制和保护相关性、我们准确引导免疫反应以及为特定人群接种疫苗的能力,都是这些障碍的例子。在这方面,使用一种强大、经济高效且具有预测性的动物模型来概括人类感染和疫苗接种的特征,目前是一种急需的工具。我们在此讨论现代疫苗学面临的主要局限性,尤其是用于评估免疫系统的人源化小鼠的开发及其作为疫苗模型的潜力。

相似文献

1
New challenges in modern vaccinology.
BMC Immunol. 2015 Mar 26;16:18. doi: 10.1186/s12865-015-0075-2.
2
Unmet needs in modern vaccinology: adjuvants to improve the immune response.
Vaccine. 2010 Aug 31;28 Suppl 3:C25-36. doi: 10.1016/j.vaccine.2010.07.021.
3
Systems vaccinology: Enabling rational vaccine design with systems biological approaches.
Vaccine. 2015 Sep 29;33(40):5294-301. doi: 10.1016/j.vaccine.2015.03.072. Epub 2015 Apr 6.
4
New approaches in vaccine development.
Comp Immunol Microbiol Infect Dis. 2003 Oct;26(5-6):329-41. doi: 10.1016/S0147-9571(03)00018-3.
5
[Novel vaccines against M. tuberculosis].
Kekkaku. 2006 Dec;81(12):745-51.
6
Towards Predicting Protective Vaccine Responses in the Very Young.
Trends Immunol. 2016 Aug;37(8):523-534. doi: 10.1016/j.it.2016.05.005. Epub 2016 Jun 22.
7
Strengthening vaccination policies in Latin America: an evidence-based approach.
Vaccine. 2013 Aug 20;31(37):3826-33. doi: 10.1016/j.vaccine.2012.12.062. Epub 2013 Jan 25.
8
[New vaccination strategies].
Bull Acad Natl Med. 2008 Mar;192(3):511-8; discussion 518-9.
9
Predictive value of primate models for AIDS.
AIDS Rev. 2004 Oct-Dec;6(4):187-98.
10
Vaccinology in the era of high-throughput biology.
Philos Trans R Soc Lond B Biol Sci. 2015 Jun 19;370(1671). doi: 10.1098/rstb.2014.0146.

引用本文的文献

1
Why the Jenner/Pasteur paradigm is insufficient for controlling vector-borne diseases and the role of microbiota-mediated interactions.
Curr Res Parasitol Vector Borne Dis. 2025 Jul 8;8:100291. doi: 10.1016/j.crpvbd.2025.100291. eCollection 2025.
3
Vaccine-associated enhanced disease in humans and animal models: Lessons and challenges for vaccine development.
Front Microbiol. 2022 Aug 10;13:932408. doi: 10.3389/fmicb.2022.932408. eCollection 2022.
4
High-throughput Sequencing in Vaccine Research.
J Vet Res. 2021 May 31;65(2):131-137. doi: 10.2478/jvetres-2021-0029. eCollection 2021 Jun.
5
[Not Available].
Bull Acad Natl Med. 2017 Jan-Mar;201(1):259-272. doi: 10.1016/S0001-4079(19)30502-3. Epub 2019 Jun 18.
7
8
Systemic cytokine and chemokine responses in immunized mice challenged with staphylococcal enterotoxin B.
Toxicon. 2017 Jul;133:82-90. doi: 10.1016/j.toxicon.2017.05.005. Epub 2017 May 3.
9
Impaired Antigen-Specific Immune Response to Vaccines in Children with Antibody Production Defects.
Clin Vaccine Immunol. 2015 Aug;22(8):875-82. doi: 10.1128/CVI.00148-15. Epub 2015 May 27.

本文引用的文献

1
Systems vaccinology: probing humanity's diverse immune systems with vaccines.
Proc Natl Acad Sci U S A. 2014 Aug 26;111(34):12300-6. doi: 10.1073/pnas.1400476111. Epub 2014 Aug 18.
2
An outbreak of measles in an undervaccinated community.
Pediatrics. 2014 Jul;134(1):e220-8. doi: 10.1542/peds.2013-4260. Epub 2014 Jun 9.
3
Vaccines for the 21st century.
EMBO Mol Med. 2014 Jun;6(6):708-20. doi: 10.1002/emmm.201403876. Epub 2014 Apr 6.
4
Dendritic cell-mediated immune humanization of mice: implications for allogeneic and xenogeneic stem cell transplantation.
J Immunol. 2014 May 15;192(10):4636-47. doi: 10.4049/jimmunol.1302887. Epub 2014 Apr 16.
5
FLT3-ligand treatment of humanized mice results in the generation of large numbers of CD141+ and CD1c+ dendritic cells in vivo.
J Immunol. 2014 Feb 15;192(4):1982-9. doi: 10.4049/jimmunol.1302391. Epub 2014 Jan 22.
6
A systems framework for vaccine design.
Curr Opin Immunol. 2013 Oct;25(5):551-5. doi: 10.1016/j.coi.2013.09.014.
7
Structure-based design of a fusion glycoprotein vaccine for respiratory syncytial virus.
Science. 2013 Nov 1;342(6158):592-8. doi: 10.1126/science.1243283.
8
Preclinical in vivo evaluation of the safety of a multi-shRNA-based gene therapy against HIV-1.
Mol Ther Nucleic Acids. 2013 Sep 3;2(9):e120. doi: 10.1038/mtna.2013.48.
9
Immunity to viruses: learning from successful human vaccines.
Immunol Rev. 2013 Sep;255(1):243-55. doi: 10.1111/imr.12099.
10
Advances in structure-based vaccine design.
Curr Opin Virol. 2013 Jun;3(3):322-31. doi: 10.1016/j.coviro.2013.05.010. Epub 2013 Jun 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验