Shenyang National Laboratory for Materials Science (SYNL), Institute of Metal Research, Chinese Academy of Sciences, Wenhua Road 72, 110016 Shenyang, China.
Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, TN 37831-6071, USA.
Science. 2015 May 1;348(6234):547-51. doi: 10.1126/science.1259869. Epub 2015 Apr 16.
Nanoscale ferroelectrics are expected to exhibit various exotic domain configurations, such as the full flux-closure pattern that is well known in ferromagnetic materials. Here we observe not only the atomic morphology of the flux-closure quadrant but also a periodic array of flux closures in ferroelectric PbTiO3 films, mediated by tensile strain on a GdScO3 substrate. Using aberration-corrected scanning transmission electron microscopy, we directly visualize an alternating array of clockwise and counterclockwise flux closures, whose periodicity depends on the PbTiO3 film thickness. In the vicinity of the core, the strain is sufficient to rupture the lattice, with strain gradients up to 10(9) per meter. Engineering strain at the nanoscale may facilitate the development of nanoscale ferroelectric devices.
纳米尺度的铁电体有望呈现出各种奇异的畴构型,例如在铁磁材料中广为人知的全磁通量封闭模式。在这里,我们不仅观察到了磁通量封闭象限的原子形态,还在 GdScO3 衬底上的拉伸应变作用下,观察到了铁电 PbTiO3 薄膜中周期性排列的磁通量封闭。使用相衬校正扫描透射电子显微镜,我们直接观察到了顺时针和逆时针磁通量封闭的交替排列,其周期性取决于 PbTiO3 薄膜的厚度。在核心附近,应变足以破坏晶格,应变梯度高达每米 10^9。纳米尺度的工程应变可能有助于开发纳米尺度的铁电器件。