Suppr超能文献

使用压缩感知和数据驱动并行成像的膝关节软骨定量加速T1ρ采集:一项可行性研究。

Accelerated T1ρ acquisition for knee cartilage quantification using compressed sensing and data-driven parallel imaging: A feasibility study.

作者信息

Pandit Prachi, Rivoire Julien, King Kevin, Li Xiaojuan

机构信息

Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA.

GE Healthcare, Waukesha, Wisconsin, USA.

出版信息

Magn Reson Med. 2016 Mar;75(3):1256-61. doi: 10.1002/mrm.25702. Epub 2015 Apr 17.

Abstract

PURPOSE

Quantitative T1ρ imaging is beneficial for early detection for osteoarthritis but has seen limited clinical use due to long scan times. In this study, we evaluated the feasibility of accelerated T1ρ mapping for knee cartilage quantification using a combination of compressed sensing (CS) and data-driven parallel imaging (ARC-Autocalibrating Reconstruction for Cartesian sampling).

METHODS

A sequential combination of ARC and CS, both during data acquisition and reconstruction, was used to accelerate the acquisition of T1ρ maps. Phantom, ex vivo (porcine knee), and in vivo (human knee) imaging was performed on a GE 3T MR750 scanner. T1ρ quantification after CS-accelerated acquisition was compared with non CS-accelerated acquisition for various cartilage compartments.

RESULTS

Accelerating image acquisition using CS did not introduce major deviations in quantification. The coefficient of variation for the root mean squared error increased with increasing acceleration, but for in vivo measurements, it stayed under 5% for a net acceleration factor up to 2, where the acquisition was 25% faster than the reference (only ARC).

CONCLUSION

To the best of our knowledge, this is the first implementation of CS for in vivo T1ρ quantification. These early results show that this technique holds great promise in making quantitative imaging techniques more accessible for clinical applications.

摘要

目的

定量T1ρ成像有助于骨关节炎的早期检测,但由于扫描时间长,其临床应用有限。在本研究中,我们评估了使用压缩感知(CS)和数据驱动并行成像(用于笛卡尔采样的自动校准重建,ARC)相结合的方法进行加速T1ρ成像以量化膝关节软骨的可行性。

方法

在数据采集和重建过程中,采用ARC和CS的顺序组合来加速T1ρ图的采集。在GE 3T MR750扫描仪上进行了体模、离体(猪膝关节)和活体(人膝关节)成像。将CS加速采集后的T1ρ定量结果与各种软骨区域的非CS加速采集结果进行比较。

结果

使用CS加速图像采集不会在定量方面引入重大偏差。均方根误差的变异系数随着加速倍数的增加而增加,但对于活体测量,在净加速因子高达2时,其保持在5%以下,此时采集速度比参考值(仅ARC)快25%。

结论

据我们所知,这是CS在活体T1ρ定量中的首次应用。这些早期结果表明,该技术在使定量成像技术更易于临床应用方面具有很大的前景。

相似文献

2
Accelerating T1ρ cartilage imaging using compressed sensing with iterative locally adapted support detection and JSENSE.
Magn Reson Med. 2016 Apr;75(4):1617-29. doi: 10.1002/mrm.25773. Epub 2015 May 22.
3
Compressed sensing acceleration of biexponential 3D-T relaxation mapping of knee cartilage.
Magn Reson Med. 2019 Feb;81(2):863-880. doi: 10.1002/mrm.27416. Epub 2018 Sep 19.
4
Accelerating 3D-T mapping of cartilage using compressed sensing with different sparse and low rank models.
Magn Reson Med. 2018 Oct;80(4):1475-1491. doi: 10.1002/mrm.27138. Epub 2018 Feb 25.
5
Rapid mono and biexponential 3D-T mapping of knee cartilage using variational networks.
Sci Rep. 2020 Nov 5;10(1):19144. doi: 10.1038/s41598-020-76126-x.
7
Rapid 3D-T1rho mapping of the knee joint at 3.0T with parallel imaging.
Magn Reson Med. 2006 Sep;56(3):563-71. doi: 10.1002/mrm.20982.
8
High resolution T1ρ mapping of in vivo human knee cartilage at 7T.
PLoS One. 2014 May 15;9(5):e97486. doi: 10.1371/journal.pone.0097486. eCollection 2014.
10
Rapid compositional mapping of knee cartilage with compressed sensing MRI.
J Magn Reson Imaging. 2018 Nov;48(5):1185-1198. doi: 10.1002/jmri.26274. Epub 2018 Oct 8.

引用本文的文献

2
Cartilage compositional MRI-a narrative review of technical development and clinical applications over the past three decades.
Skeletal Radiol. 2024 Sep;53(9):1761-1781. doi: 10.1007/s00256-024-04734-z. Epub 2024 Jul 9.
4
SuperMAP: Deep ultrafast MR relaxometry with joint spatiotemporal undersampling.
Magn Reson Med. 2023 Jan;89(1):64-76. doi: 10.1002/mrm.29411. Epub 2022 Sep 21.
5
Embedded Quantitative MRI T Mapping Using Non-Linear Primal-Dual Proximal Splitting.
J Imaging. 2022 May 31;8(6):157. doi: 10.3390/jimaging8060157.
7
Performance Comparison of Compressed Sensing Algorithms for Accelerating T Mapping of Human Brain.
J Magn Reson Imaging. 2021 Apr;53(4):1130-1139. doi: 10.1002/jmri.27421. Epub 2020 Nov 15.
8
Rapid mono and biexponential 3D-T mapping of knee cartilage using variational networks.
Sci Rep. 2020 Nov 5;10(1):19144. doi: 10.1038/s41598-020-76126-x.
9
Resolution-dependent influences of compressed sensing in quantitative T2 mapping of articular cartilage.
NMR Biomed. 2020 Dec;33(12):e4260. doi: 10.1002/nbm.4260. Epub 2020 Feb 10.
10
Rapid Knee MRI Acquisition and Analysis Techniques for Imaging Osteoarthritis.
J Magn Reson Imaging. 2020 Nov;52(5):1321-1339. doi: 10.1002/jmri.26991. Epub 2019 Nov 21.

本文引用的文献

1
PANDA-T1ρ: Integrating principal component analysis and dictionary learning for fast T1ρ mapping.
Magn Reson Med. 2015 Jan;73(1):263-72. doi: 10.1002/mrm.25130. Epub 2014 Feb 14.
2
PRACTICAL PARALLEL IMAGING COMPRESSED SENSING MRI: SUMMARY OF TWO YEARS OF EXPERIENCE IN ACCELERATING BODY MRI OF PEDIATRIC PATIENTS.
Proc IEEE Int Symp Biomed Imaging. 2011 Dec 31;2011:1039-1043. doi: 10.1109/ISBI.2011.5872579.
3
Quantitative parametric MRI of articular cartilage: a review of progress and open challenges.
Br J Radiol. 2013 Mar;86(1023):20120163. doi: 10.1259/bjr.20120163.
4
Accelerating MR parameter mapping using sparsity-promoting regularization in parametric dimension.
Magn Reson Med. 2013 Nov;70(5):1263-73. doi: 10.1002/mrm.24577. Epub 2012 Dec 4.
5
Experimental evaluation of accelerated T1rho relaxation quantification in human liver using limited spin-lock times.
Korean J Radiol. 2012 Nov-Dec;13(6):736-42. doi: 10.3348/kjr.2012.13.6.736. Epub 2012 Oct 12.
7
Advances in imaging of osteoarthritis and cartilage.
Radiology. 2011 Aug;260(2):332-54. doi: 10.1148/radiol.11101359.
8
Compressed sensing reconstruction for magnetic resonance parameter mapping.
Magn Reson Med. 2010 Oct;64(4):1114-20. doi: 10.1002/mrm.22483.
10
Accelerating SENSE using compressed sensing.
Magn Reson Med. 2009 Dec;62(6):1574-84. doi: 10.1002/mrm.22161.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验